

OPERATING SYSTEM

For
COMPUTER SCIENCE

.

SYLLABUS
Processes, threads, interprocess communication, concurrency and synchronization.
Deadlock. CPU scheduling. Memory management and virtual memory. File systems.

ANALYSIS OF GATE PAPERS

Exam Year 1 Mark Ques. 2 Mark Ques. Total

2003 2 5 12
2004 3 4 11
2005 - 2 4
2006 1 8 17
2007 2 6 14
2008 2 5 12
2009 2 5 12
2010 3 2 7
2011 4 2 8
2012 1 4 9
2013 2 4 10

2014 Set-1 2 3 8
2014 Set-2 1 3 7
2014 Set-3 1 3 7
2015 Set-1 2 4 10
2015 Set-2 2 3 8
2015 Set-3 2 2 6
2016 Set-1 1 4 9
2016 Set-2 1 3 7
2017 Set-1 2 2 6
2017 Set-2 2 2 6

2018 4 6 10

OPERATING SYSTEM

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Topics Page No

1. PROCESS AND DEADLOCK

 1.1 Process Concept 1
 1.2 Process States 1
 1.3 Degree of Multiprogramming 1
 1.4 Process Control Block 1
 1.5 Threads 1
 1.6 CPU Scheduling 2
 1.7 Scheduling Algorithms 3
 1.8 Deadlock 8
 1.9 Three Types of Problems 12
 1.10 Procedure Consumer Problem 12
 1.11 Printer And Spooler Problem 13
 1.12 Solution to IPC/ Synchronization 13
 1.13 Solution to Producer Consumer Problem using Semaphores 15
 1.14 Solution to Reader & Writer Problem 15
 Gate Questions 17

2. MEMORY MANAGEMENT

 2.1 Introduction 53
 2.2 Single Partition Allocation 55
 2.3 External & Internal Fragmentation 56
 2.4 Segmentation 58
 2.5 Fragmentation 59
 2.6 Virtual Memory 59
 2.7 Page Replacement 60
 2.8 Demand Paging 61
 2.9 Page-Replacement 61
 2.10 Counting Algorithms 63
 2.11 Allocation of Frames 63
 2.12 Thrashing 64
 Gate Questions 65

3. INTERRUPTS

 3.1 Introduction 78

CONTENTS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 3.2 Interrupts 78
 3.3 Applications I/O Interface 79
 3.4 Block and Character Devices 79
 3.5 Kernel I/O subsystems 79

3.6 Performance 81
 3.7 Stable-Storage Implementation 83
 Gate Questions 85

4. FILE-MANAGEMENT
 4.1 Introduction 88

 4.2 File Concept 88
 4.3 Access Methods 89

4.4 Single-Level Directory 91
 4.5 Types of Access 91
 4.6 Allocation Methods 92

4.7 Free-Space Management 94
 4.8 Directory Implementation 94
 Gate Questions 96

5. ASSIGNMENT QUESTIONS 99

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1.1 PROCESS

Process is just an executing program,
including the current values of the
program counter, registers, and variables.

1.2 PROCESS STATES
 Figure shows all process states.

State 2, 3, and 4: Process in these states
reside in RAM.
State 5, 6: Process is shifted to secondary
storage deliberately for some time.

1.2.1 Three types of scheduler:
(a) LTS (Long Term Scheduler): It is the

responsibility of LTS to create a
process and bring it in ready state.
LTS decides which programs are
admitted to system for execution.

(b) MTS (Medium Term Scheduler): Its
responsibility is in two cases. When
ready stated becomes crowded so
that OS doesn’t have resources
(RAM) to accommodate large
number of processes in ready state,
they can be moved by MTS to
suspended_ready state.
Also, when resources (RAM) gets
exhausted in wait state due to
crowding, MTS shifts them to

suspended wait state (i.e.
secondary storage).MTS reduces
degree of multiprogramming.

(c) STS (Short Term Scheduler): It is
responsible to pick one process
from ready state and allocate it to
CPU.STS saves and loads context of
a process in its PCB while
switching.

LTS: Job Scheduler
MTS: Swapping
STS: CPU Scheduler/Dispatcher
STS is faster than LTS.

Process with respect to their execution
time are divided into two types:

(a) CPU Bound Process: - Processes
which require more CPU time are
called CPU Bound Process. The
process will spend more time in
ready state.

(b) IO Bound Process: - Processes
which require more IO time are
called IO Bound Process.

1.3 Degree of Multiprogramming
The number of processes in the memory at
any point of time is called degree of
multiprogramming. LTS should select good
combination of CPU bound and IO bound
processes. LTS controls degree of
multiprogramming.

1.4 PROCESS CONTROL BLOCK
Every process has its own PCB. PCB is
stored in RAM.
Attributes: pid, process state, PC (program
counter),GPR(general purpose
registers),Priority, List of open files,
Protection & security.

1 PROCESS & DEADLOCK

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The set of these attributes is called context.
Context is stored in PCB.

1.5 THREADS
Threads are light weight processes. Each
thread has its own Stack, Registers and

Program Counter. Thread share data, code,
memory, files, address space, File
descriptor table, so on.

User Level Threads Kernel Level Threads
User level threads are dependent. Kernel level threads are independent.
They are faster. They are comparatively slower but

faster than a process.
They are scheduled by thread library. They are scheduled by OS.
They have less context. They have more context.
Blocking IO calls: If one thread
other thread of that process can run.

Non-Blocking IO calls: If one thread
blocks for IO, OS schedules another for
execution.

1.6 CPU SCHEDULING
 SCHEDULING CRITERIA

 The scheduling criteria that are used
includes

i) CPU utilization
The CPU should be kept as busy as
possible. CPU utilization may range
from 0 to 100 per cent. In a real system,
it should range from 40 per cent (for a
lightly loaded system) to 90 per cent
(for a heavily used system).

ii) Throughput
If the CPU is busy executing processes,
then work is being done. One measure
of work is the number of processes that
are completed per time unit, called
throughput. For long processes, this
rate may be one.

Various Time Measures related to
CPU Scheduling:

(a) Arrival Time
The time when the process arrived
into ready state is called arrival time.

(b) Burst Time
The time required for the process to
complete its execution is called Burst
Time.

(c) Completion Time
The time when the process has
completed its execution is called
completion time.

(d) Turnaround time
The interval from the time of
submission of a process to the time of
completion is the turnaround time. TAT
= CT – WT.

(e) Waiting time
The amount of time a process spends
waiting in the ready queue.
WT = TAT-BT.

(f) Response time
Response time, is the amount of time it
takes to start responding, but not the
time that it takes to output that
response. The turnaround time is
generally limited by the speed of the
output device.
The goal is to maximize CPU
Utilization, minimize average Turn

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

around Time, and minimize Waiting
Time of processes.

1.7 SCHEDULING ALGORITHMS

1.7.1 First-Come, First-Served
Scheduling (FCFS)
Criteria: Arrival Time
Mode : Non Preemptive
Data Structure: Queue
Tie Breaker : Process Number
The average waiting time under the FCFS
policy, however, is often quite long.
Consider the following set of processes
that arrive at time 0, with the length of the
CPU- burst time given in milliseconds:

PROC
ESS

ARRIVA
L TIME

BURS
T
TIME

CT TA
T

W
T

P1
P2
P3

0
0
0

24
3
3

24
27
30

24
27
30

0
24
27

GANTT CHART:

P1 P2 P3
 0 24 25 27 28 30

Now, the waiting time is 0 milliseconds for
process P1, 24 milliseconds for process P2,
and 27 milliseconds for process P3. Thus,

the average waiting time =
0+24+27

3
=

17milliseconds.
This example also shows Convoy effect.
FCFS suffers from convoy effect.

If the processes arrive in the order P2, P3,
P1, however, the results will be as shown in
the following Gantt chart:

P2 P3 P1
 0 3 6 30

Now, the average waiting time =
6+0+3

3
=

3milliseconds.

This reduction is substantial. Thus, the
average waiting time under a FCFS policy
is generally not minimal.
The FCFS scheduling algorithm is non-
preemptive. Once, the CPU has been
allocated to a process, that process keeps
the CPU until it releases the CPU, either by
terminating or by requesting I/O.

1.7.2 Shortest –Job-First Scheduling
(SJF)
Criteria: Burst Time
Mode : Non Preemptive
Data Structure: Min Heap
Tie Breaker : Arrival Time
Shortest Job First has minimum average
waiting time among all CPU scheduling
algorithms.
Consider the following set of process, with
the length of the CPU burst time given in
milliseconds:

PROCESS BURST TIME
P1
P2
P3
P4

6
8
7
3

Using SJF scheduling, we would schedule
these processes according the following
Gantt chart:

P4 P1 P3 P2
 0 3 9 16 24
The waiting time is 3 milliseconds for
process P1, 16 milliseconds for process P2,
9 milliseconds for process P3, and 0
milliseconds for process P4.
Thus, the average waiting time =
3 16 9 0

4

  

= 7 milliseconds.
If we were using the FCFS scheduling
scheme, then the average waiting time
would be 10.25 milliseconds.
The SJF scheduling algorithm is provably
optimal, in that it gives the minimum
average waiting time for a given set of

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

processes. If two processes have the same
length next CPU burst, FCFS scheduling is
used to break the tie.

SJF ADVANTAGES
(a) Maximum Throughput.
(b) Minimum Average WT and

Minimum Average TAT.
SJF DISADVANTAGES

(a) Starvation to longer jobs.
(b) It is not implementable because BT

of process cannot be known ahead.
Solution:

SJF with predictive Burst Time.

Prediction Techniques:
I. Static :

a. Process Size
b. Process Type (OS

,Interactive, Foreground,
Background)

II. Dynamic:
a. Simple Averaging
b. Exponential Averaging

a. Simple Averaging:
Number of process: n (P1, P2,
P3, , Pn)
ti: Actual BT ,where i= 1 to n
 i : Predicted BT
 n+1 = (1/n) * ∑ ti , where i=1 to
n.

b. Exponential Averaging:
Let tn be the length of the nth

CPU burst, and let n 1
, be our

predicted value for the next CPU
burst. Then, for 0 1 , define

n 1 n nt (1)     

This formula defines an
exponential average. The value
of tn contains our most recent
information;  n stores the past
history. The parameter a

controls the relative weight of
recent and past history in our
production.

If =0, then n 1
= tn, and recent history

has no effect (current conditions are
assumed to be transient);

If =1, then n 1
= tn and only the most

recent CPU burst matters (history is
assumed to be old and irrelevant). More
commonly,  = 1/2.
To understand the behavior of the
exponential average, we can expand the

formula for n 1
by substituting for n, to

find
j n 1

n 1 n n 1 n j 0t (1) ... (1) t (1) 

             

Since both  and (1 - ) are less than or
equal to 1, each successive term has less
weight than its predecessor. The SJF
algorithm may be either preemptive or
non-pre-emptive. The choice arises when a
new process arrives at the ready queue
while a previous process is of the currently
executing process. A preemptive SJF
algorithm will preempt the currently
executing process; whereas a non-pre-
emptive SJF algorithm will allow the
currently running process to finish its CPU
burst Preemptive SJF scheduling is
sometimes called shortest-remaining-
lime-first scheduling.

Consider the following four processes,
with the length of the CPU-burst time given
in milliseconds:

PROCE
SS

ARRIV
AL
TIME

BURS
T
TIME

C
T

TA
T

W
T

P1
P2
P3
P4

0
1
2
3

8
4
9
5

17
5
26
10

17
4
24
7

9
0
15
2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Preemptive SJF schedule is as depicted in
the following Gantt chart:

P1 P2 P4 P1 P3
0 1 5 10 17 26
Process P1 is started at time 0, since it is
the only process in the queue. Process P2
arrives at time 1. The remaining time for
process P1 (7 milliseconds) is larger than
the time required by process P2 (4
milliseconds), so process P1 is preempted,
and process P2 is scheduled.
The average waiting time
= 9+0+15+2/4
=26/4

 =6.5milliseconds.
 A non-pre-emptive SJF scheduling would
result in an average waiting time of 7.75
milliseconds.

1.7.3 Shortest Remaining Time First
Scheduling (SRTF)
Criteria: Burst Time
Mode : Preemptive
Data Structure: Min Heap
Tie Breaker : LEVEL 0: Arrival Time

 LEVEL 1: Process No.
A preemptive version of shortest job first
is shortest remaining time next. With
this algorithm, the scheduler always
chooses the process whose remaining run
time is the shortest. Again here, the run
time has to be known in advance. When a
new job arrives, its total time is compared
to the current process' remaining time. If
the new job needs less time to finish than
the current process, the current process is
suspended and the new job started. This
scheme allows new short jobs to get good
service.

1.7.4 Round Robin Scheduling
Criteria: Time Quantum and Arrival
Time

(Practically implementable since it
doesn’t depend on Burst Time).
Mode : Preemptive
Data Structure: Queue
Tie Breaker : Process Number
No Starvation.
Minimum Response Time.

What would happen if Time Quantum is
very small and TQ is very large?
Small TQ: More Context Switching.
Therefore, reduced throughput.
Large TQ: Starvation for some process.

Example:
1. TQ=4 units

Pno AT BT CT TAT WT
1 0 4 4 4 0
2 1 5 19 18 13
3 2 2 10 8 6
4 3 1 11 8 7
5 4 6 21 17 13
6 5 3 18 12 9

P1 P2 P3 P4 P5 P6 P2 P5
0 4 8 10 11 15 18 19 21

As you increase TQ, Context Switching
decreases, Response Time increases.
As you decrease TQ, Context Switching
increases, Response Time decreases.
If TQ = infinity, Round Robin reduces to
FCFS.

Example 2:
Let Time Quantum = ‘q’ units.
Context Switching Time =‘s’ units.
Each process is guaranteed to get turn
at CPU for‘t’ seconds.
Number of processes = ‘n’
What must be the value of ‘q’ so that ‘s’
is reduced?

Solution:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

n * s + (n-1)*q <= t
q <= (t-ns)/ (n-1)

For Process P1:
4 * S + (4-1)*Q <= T

1.7.5 Highest Response Ratio Next
Criteria: Response Ratio

 Response Ratio = (w+s)/s
W: Waiting Time for a process so

far.
 S: Service Time of a process or

Burst Time
Mode : Non- Preemptive

Analysis:
(a) Process with lowest BT will have

highest RR.
(b) Also, the process with longest

waiting time will have higher RR.
So, HRRN limits the waiting time of longer
jobs and favors shorter jobs
simultaneously.
HRRN overcomes the problem of
starvation of SJF where we take only
shortest jobs first.
HRRN is better than SJF but both fails at
implementation level because Burst Time
is one of their criteria which can’t be
known priory.

Pno AT BT CT TAT WT RT
0 0 3 3 3 0 0-

0=0
1 2 6 9 7 1 3-

2=1
2 4 4 13 11 7 9-

4=5

3 6 5 20 14 9 15-
6=9

4 8 2 15 7 5 13-
8=5

At t=9 P3, P3 and P4 are available
RR2 = ((9-4) +4)/4 = 2.25 Maximum
(Scheduled Next)
RR3 = ((9-6) +5)/5 = 8/5
RR4 = ((9-8) +2)/2 = 3/2=1.5

At t=13 P3 and P4 are available
RR3 = ((13-6) +5)/5 = 12/5
RR4 = ((13-8) +2)/2 = 7/2=3.5
Maximum (Scheduled Next)

Gantt chart:

P0 P1 P2 P4 P3
1 3 9 13 15 20

1.7.6 Non Pre-emptive Priority
Scheduling
Criteria: Priority
Mode : Non- Preemptive
Tie Breaker: Level – 0 Arrival Time

 Level—1 Process Number.
First prefer lower arrival time, then prefer
lower process number.

Pno PRI
ORI
TY

AT BT CT TA
T

W
T

RT

1 2 0 4 4 4 0 0
2 4 1 2 25 24 22 22
3 6 2 3 23 21 18 18
4 10 3 5 9 6 1 1
5 8 4 1 20 16 15 15
6 12 5 4 13 8 4 4
7 9 6 6 19 13 7 7

Gantt chart:
P1 P4 P6 P7 P5 P3 P2

0 4 9 13 19 20 23 25

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 1.7.7 Pre-emptive Priority Scheduling
Criteria: Priority
Mode : Preemptive
Tie Breaker: Level – 0 Arrival Time

 Level—1 Process Number.
 First prefer lower arrival time,

then prefer lower process number.

Pno
PRI
ORI
TY

AT BT CT TA
T

W
T

RT

1 2 0 4 25 25 21 0
2 4 1 2 22 21 19 0
3 6 2 3 21 19 16 0
4 10 3 5 12 9 4 0
5 8 4 1 19 15 14 14
6 12 5 4 9 4 0 0
7 9 6 6 18 12 6 6

Gantt chart:
P
1

P
2

P
3

P
4

P
4

P
6

P
4

P
7

P
5

P
3

P
2

P
1

0 1 2 3 4 5 9 12 18 19 21 22 25

After all processes have arrived,
preemptive priority scheduling becomes
non-preemptive priority scheduling.
If Arrival Time is same for all processes,
Preemptive = Non-Preemptive. This is true
for SJF also.

1.7.8 Multilevel Queue Scheduling

Another class of scheduling algorithms has
been created for situations in which
processes are easily classified into
different groups. For example, a common
division is made between foreground
(interactive) processes and background
(batch) processes. These two types of
processes have different response-time
requirements, and so might have different
scheduling needs. In addition, foreground,

foreground processes may have priority
(externally defined) over back ground
processes.
A multilevel queue-scheduling algorithm
partitions the ready queue into several
separate queues (Figure below).

Advantages: Different Scheduling
algorithms can be applied for different
queues.
Disadvantages: As long as there is a single
process in highest queue, no process from
lower queues will get a chance.

1.7.9 Multilevel Feedback Queue
Scheduling
Multilevel feedback queue scheduling,
however, allows a process to move
between queues. The idea is to separate
processes with different CPU-burst
characteristics. If a Process uses too much
CPU time, it will be moved to a lower-
priority queue. This scheme leaves I/O-
bound and interactive processes in the
higher-priority queues. Similarly, a
process that waits too long in a lower-
priority queue may be moved to a higher-
priority queue. This form of aging prevents
starvation.
In general, a multilevel feedback queue
scheduler is defined by the following
parameters:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) The number of queues
b) The scheduling algorithm for each

queue
c) The method used to determine when to

demote a process to a lower-priority
queue

d) The method used to determine which
queue a process will enter when that
process needs service. The definition of
a multilevel feedback queue scheduler
makes it the most general CPU
scheduling algorithm.

Advantage: No starvation at all.
SOME POINTS TO PONDER:

(a) All process are IO Bound: CPU
Utilization decreases, Throughput
decreases.

(b) All process are CPU Bound: CPU
Utilization increases. Throughput
decreases. Here, throughput
decreases because number of
process executed per second
decreases.

Throughput = Number of process
completed (n)/Time to complete
(t)
STARVATION: (IN ALL
ALGORITHMS)

FCFS NP-
SJF

SRT
F

RR PRIORI
TY-NP

PRIOR
ITY-P

LJF-
NP

LRTF HRR
N

MULTILEV
EL QUEUE

MULTILEVEL
FEEDBACK
QUEUE

NO YES YES NO YES YES YES YES NO YES NO

1.8 DEADLOCK

1.8.1 Introduction
Under the normal mode of operation, a
process may utilize a resource in only the
following sequence:
a) Request:

If the request cannot be granted
immediately (for example, the
resource is being used by another
process), then the requesting process
must wait until it can acquire the
resource.

b) Use:
The process can operate on the
resource (for example, if the resource is
a printer, the process can print on the
printer).

c) Release:

The process releases the resource. The
request and release of resources are
system calls. Examples are the request
and release device, open and close
file, and allocate and free memory
system calls. Request and release of
other resources can be accomplished
through the wait and signal operations
on semaphores. Therefore, for each
use, the operating system checks to
make sure that the using process has
requested and been allocated the
resource. A system table records
whether each resource is free or
allocated, and, if a resource is allocated,
to which process. If a process requests a
resource that is currently allocated to
another process, it can be added to a
queue of processes waiting for this
resource. To illustrate a deadlock state,
consider a system with three tape

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

drives. Suppose that there are three
processes, each holding one of these
tape drives. If each process now
requests another tape drive, the three
processes will be in a deadlock state.
Each is waiting for the event "tape drive
is released," which can be caused only by
one of the other waiting processes. This
example illustrates a deadlock
involving processes competing for the
same resource type. Deadlocks may
also involve different resource types.
Consider a system with one printer and
one tape drive. Suppose that process Pi
is holding the tape drive and process Pj
is holding the printer. If Pi requests the
printer and Pj requests the tape drive, a
deadlock occurs.

1.8.2 DEADLOCK CHARACTERIZATION
Necessary Conditions
A deadlock situation can arise if the
following four conditions hold
simultaneously in a system:

a) Mutual exclusion
At least one resource must be held in a
non-sharable mode; i.e., only one
process at a time can use the resource.
If another process requests that
resource, the requesting process must
be delayed until the resource has been
released.

b) Hold and wait
There must exist a process that is
holding at least one resource and is
waiting to acquire additional resources
that are currently being held by other
processes.

c) No preemption
Resources cannot be preempted; i.e., a
resource can be released only
voluntarily by the process holding it,

after that process has completed its
task.

4) Circular waits
There must exist a set {P0, P1, ….Pn} of
waiting such that P0 is waiting for a
resource that is held by P1, P1 is waiting
for a resource that is held by P2, ……,Pn-

1 is waiting for a resource that is held
by Pn, and Pn is waiting for a resource
that is held by P0.
All these four conditions must hold for
deadlock to occur.

1.8.3 Methods for Handling Deadlocks
There are three different methods for
dealing with the deadlock problem.
a) We can use a protocol to ensure that

the system will never enter a deadlock
state.

b) We can allow the system to enter a
deadlock state and then recover.

c) We can ignore the problem all together,
and pretend that deadlocks never
occur in the system. This solution is the
one used by most operating systems,
including UNIX.
To ensure that deadlocks never occur,
the system can use either deadlock
prevention or a deadlock-avoidance
scheme.

1.8.4 Deadlock Prevention
For a deadlock to occur, each of the four
necessary conditions must hold. By
ensuring that at least of these conditions
cannot hold, we can prevent the
occurrence of a deadlock. Now consider
each of the four necessary conditions
separately.

1.8.4.1 Mutual Exclusion
The mutual –exclusion must hold for non-
sharable resources. For example, a printer
cannot be simultaneously shared by
several processes. Sharable resources, on
the other hand, do not require mutually

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

exclusive access, and thus cannot be
involved in a deadlock. Read-only files are
a good example of a sharable resource. If
several Processes attempt to open a read-
only file at the same time, they can be
granted simultaneous access to the file.

 1.8.4.2 Hold and Wait
To ensure that the hold-and –wait
condition occurs in the system, we must
guarantee that, whether a process
requests a resource, it does not hold any
other resources. One protocol that can be
used requires each process to request and
be allocated all its resources before it
being execution. We can implement this
provision by requiring that system calls
requesting resources for a process precede
all other system calls.

1.8.4.3 No Preemption
To ensure that this condition does hold, we
can use following protocol. If a process
that is hold some resources requests
another resource that cannot be
immediately allocated to it (that is, the
process must wait), then all resources
currently being held are preempted. That
is, these resources are implicitly released.
The preempted resources are added to the
list of resources for which the process is
waiting. The process will be restarted only
when it can regain its old resources, as well
as the new ones that it is requesting.

An alternative protocol allows a process to
request resources only when the process
has none. A process may request some
resources and use them. Before it can
request any additional consider a system
with five processes Po through P4 and three
resources that it is currently allocated.

Consider a system
with five
processes P0
through P4 and
three resource
type A,B,C.
Resource type A 7
instance,
resources.
Suppose that, at
time T0, we have
the following
resource
allocation stare:
P∩
P1
P2
P3
P4

Allocat
ion

Requ
est

Availa
ble

A B C A B C A B C
0
2
3
2
0

1
0
0
1
0

0
0
3
1
2

0
2
0
1
0

0
0
0
0
0

0 0 0

We claim that the system is not in a
deadlocked state. Indeed, if we execute our
algorithm, we will find that the sequence <
P0, P2 P3, P1 P4 > will result in Finish[i] = true
for all i. Now suppose that process P2
makes one additional request for an
instance of type C. The Request matrix is
modified as follows:

Request

P0
P1
P2
P3
P4

0 0 2
2 0 2
0 0 1
1 0 0
0 0 2

We can say that the system is now
deadlocked. Although we can reclaim the
resources held by process P0 the number of
available resources is not sufficient to fulfill
the requests of the other processes. Thus, a
deadlock exists, consisting of processes P1,
P2, P3, and P4.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1.8.4.4 Detection-Algorithm Usage
When should we invoke the detection
algorithm? The answer depends on two
factors:

i) How often is a deadlock likely to occur?
ii) How many processes will be affected by

deadlock when it happens?

1.8.5 Recovery from Deadlock

1.8.5.1 Process Termination
To eliminate deadlocks by aborting a
process, we use one of two methods. In both
methods, the system reclaims all resources
allocated to the terminated processes.

i) Abort all deadlocked processes
This method clearly will break the
deadlock cycle, but at a great expense,
since these processes may have
computed for a long time, and the
results of these partial computations
must be discarded, and probably
must be recomputed later.

ii) Abort one process at a time until
the deadlock cycle is eliminated
This method incurs considerable
overhead, since, after each process is
aborted, a deadlock-detection
algorithm must be invoked to
determine whether any processes are
still deadlocked.

1.8.5.2 Resource Preemptions
To eliminate deadlock using resource
preemption, we successively preempt
some resources and give these resources
to other processes until the deadlock cycle
is broken. If preemption is required to deal
with deadlocks, then there issues need to
be addressed:

a) Selecting a victim
Which resources and which processes
are to be preempted? As is process
termination, we must determine the
order of preemption to minimize cost.
Cost factors may include such
parameters as the number of resources
a deadlock process is holding, and the
amount of time a deadlock process has
thus far consumed during its
execution.

b) Rollback
If we preempt a resource from a
process, what should be done with that
process? Clearly, it cannot continue
with its normal execution; it is missing
some needed resource. We must roll
back the process to some safe state,
and restart it from that state.
Since, in general, it is difficult to
determine what a safe state is, the
simplest solution is a total rollback:
Abort the process and then restart it.
However, it is more effective to roll
back the process only as far as
necessary to break the deadlock.

c) Starvation
How do we ensure that starvation will
not occur? That is, how can we
guarantee that resources will not
always be preempted from the same
process? In a system where victim
selection is based primarily on cost
factors, it may happen that its
designated task, a starvation situation
that needs to be dealt with in any
practical system. Clearly, we must
ensure that a process can be picked as
a victim only a (small) finite number of
times. The most common solution is to
include the number of rollbacks in the
cost factor.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1.9 THERE ARE THREE TYPES OF PROBLEMS WITH IPC:
Inconsistency.
 Loss of data.
 Deadlock.

1.10 PRODUCER CONSUMER PROBLEM: Process is just an executing program, including
the current values of the program counter, registers, and variables.

PRODUCER (N = Fixed Buffer Size) CONSUMER

Produces item. Consumes item.
IN variable. (IN = (IN+1) %N) OUT variable.

(OUT = (OUT+1) %N)

COUNT variable is shared between

Both Producer & Consumer.

BUFFER is shared resource between

Both Producer & Consumer.
Increments COUNT. Decrements COUNT.

STEPS: STEPS:
Produce Item. 1. Check condition to
Check condition to wait (sleep) or polling.

Wait (sleep) or polling. 2. Increment OUT.
BUFFER [IN] = Item. 3. Decrement COUNT.
Increment IN. 4. Consume Item.
Increment COUNT.

Void producer(){ Void consumer(){

Int itemc;
While(true){ While(true){

Produce_item(temp);Step 1 While(COUNT==0);Step 1

While(COUNT==N);Step 2 Itemc = BUFFER[OUT];
BUFFER[IN] = Item;Step 3 OUT = (OUT+1) %N; Step 2

IN = (IN+1) %N; Step 4 COUNT = COUNT – 1; Step 3

COUNT = COUNT + 1; Step 5 Consume_item(itemc); Step 4

} }

} }

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Problems:

Step 5 or producer () and Step 3 of
consumer() are points of focus here.
Suppose COUNT=4.
Producer puts an item on buffer, but
before incrementing COUNT, control goes
to consumer.
Consumer consumes one item, but before
decrementing COUNT, control goes to
producer.
Now, one time increment and one time
decrement is to be executed.
COUNT++ : 4+1 =5

COUNT--:4-1=3

COUNT-- : 5-1 =4
COUNT++: 3+1=4

But increment & decrements are not
executed in one machine instruction, they
require three machine instructions which
are interleaved.

COUNT++

R1 = COUNT

R1 = R1 +1

COUNT = R1

COUNT—

R2=COUNT

R2 = R2 – 1

COUNT = R2

This injects inconsistency in the variable
states.

Producer Consumer suffers with
Inconsistency. This is not compulsory that
it must suffer from all problems. If anyone
is present, it is an IPC problem

1.11 PRINTER AND SPOOLER PROBLEM

Shared Resource are IN variable and
Spooler Directory.
IN: It is used by processes.

Algorithmic steps to enter a file in Spooler
Directory:

Load Ri, M [IN] //Read IN.
Store SD [Ri],”Filename” //Make an

entry.
Increment Ri.
Store M[IN],Ri //Update IN

Printer & Spooler suffers from Loss of
data problem.

Deadlock: Possibility for processes
entering deadlock is an IPC problem.
Race Condition: When the final value of a
shared variable depends on the order of
execution of two processes, it is said to be
a race condition.
Example: COUNT variable in Producer
Consumer IN variable in Printer & Spooler

There are three conditions to achieve
Synchronization:

Mutual Exclusion: No two processes
are present in the critical section at
the same time.

Progress: No process running outside
Critical Section should restrict
another process to go inside, if
Critical section is free.

Bounded/Busy waiting: No process has
to wait forever to enter critical
section. If this condition isn’t
satisfied, there is a possibility of
starvation.

1.12 SOLUTIONS TO
IPC/SYNCHRONIZATION

Some solutions comply with all three
conditions, some fail at one or two
conditions.

1.12.1 Software Solutions:
1.12.1.1 Lock Variable

Mutual Exclusion fails.
Progress is achieved.
Bounded/Busy wait fails here.

Entry Section:
Load Ri,M[lock]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Cmp Ri,#0

Jnz Step 1

Store M[lock],#1

Critical Section

Store M[lock],#0

Lock: 0 Critical Section is free.
Lock: 1 Critical Section is busy.

1.12.1.2 Strict Alteration & Decker’s
Algorithm

Only alternate sequence is allowed.
This approach is restricted to two
processes only.
P0 P1

While (true) { While (true) {

Non_CS () Non_CS ()

While (turn! = 0); While (turn! = 1);
CS (); CS ();
Turn=1; turn=0;
} }

Mutual Exclusion is satisfied.
Progress is not achieved.
Bounded/Busy wait is satisfied.

1.12.1.3 Peterson’s Solution

#define N 2

#define TRUE 1

#define FALSE 0

Int turn;
//Shared Variable

Int interested [N];
//Shared Variable

Void enter_region(int process){

Int other = 1- process;
Interested[process] = TRUE;
Turn = process;
While(turn ==process &&

interested[other]==TRUE);
}

Void leave_region(int process){

Interested [process] = FALSE;
}

Mutual Exclusion is
satisfied.
Progress is achieved.
Bounded/Busy wait is
satisfied.

1.12.1.4 Semaphores

Semaphore is a system variable used to
achieve mutual exclusion.
The following operations can be
performed on semaphores:

Down() or P() or Wait()

Up() or V() or Release() or Signal()

Semaphores are of two types:
Counting Semaphore:

Down () operations is performed
as follows:

Value_of_semaphore--;
 If(value_of_semaphore<0)

Block process,put it in suspended list.

Up () operations is performed as follows:
Value = Value +1

 If (value <= 0)

Select a process from suspended list &
wake up.

Down () is successful if process is not
blocked, else unsuccessful.
Up () is always successful.

II. Binary Semaphore:

Down()

{

If(value == 1)

S=0

Else if(value == 0)

Block process, put
it in suspended list.

}

Up()

{

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

If list is non empty, select a
process & wake up.
Else if S==0 or S==1, make
it 1.

}

Down() is successful when
S=1,unsuccessful when S=0.

Up() is always successful.

1.13 Solution to PRODUCER
CONSUMER PROBLEM using
SEMAPHORES

Producer

While(true){

Produce(itemp);
Down(empty);
Down(mutex);

BUFFER[IN] = itemp;
IN = (IN+1) %N;
Up(mutex);
Up(Full);

}

Consumer

While(true){

Down(full);
Down(mutex);

Itemc = BUFFER[OUT];
OUT = (OUT+1) %N;
Up(mutex);
Up(empty);

}

Note:
Empty + Full = N (Always)

Mutex: Binary Semaphore to access
buffer in mutually exclusive
manner.

Empty: Counting Semaphore

Full : Counting Semaphore

COUNT in previous approach is
replaced here by Mutex, Empty,
Full.

1.14 Solution to READER & WRITER
PROBLEM

Multiple readers are allowed to read
database.

Writer needs exclusive access i.e. no
reader, no writer.

For writer who is waiting outside, we
have to maintain rc(reader count).
As one reader does rc++,other
reader reads old value, so
inconsistency may occur.
Therefore, rc requires a semaphore
(mutex).

Semaphore db: For access to database.

Mutex = 1

Db =1

Rc = 0

Void reader(){

Down(mutex)
//increment rc & down db

Rc = rc+1
// if 1st reader

If(rc==1)

Down(db);
Up(mutex);
Read();
Down(mutex);
Rc = rc -1;
If(rc==0)

Up(db);
Up(mutex);

}

Void writer(){
//decrement rc & up(db)

While(TRUE){
//if last reader

Down(db)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Write();
Up(db);

}

}

The above solution is correct but,
i. Let 10 readers are in reading.

ii. Writer comes and waits.
iii. Until all 10 readers goes out &

writer goes in and comes out, no
other reader is allowed.

If new reader comes every 2 seconds and
every reader takes 5 seconds, then writer
will suffer from starvation.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 A processor needs software
interrupt to
a) Test the interrupt system of the

processor
b) Implement co- routines
c) Obtain system series which

need execution of privileged
instructions

d) Return from subroutine
[GATE -2001]

Q.2 A CPU has two modes- privileged
and non- privileged. In order to
change the mode from privileged
to non- privileged
a) a hardware interrupt is needed
b) a software interrupt is needed
c) a privileged instruction (which

does not generate an interrupt)
is needed.

d) a non-privileged instruction
(which does not generate an
interrupt) is needed.

[GATE -2001]

Q.3 Consider a set of n tasks with
known runtimes 1 2 nr , r , , r to be

run on a uni-processor machine.
Which of the following processor
scheduling algorithms will result
in the maximum throughput?
a) Round Robin
b) Shortest Job First
c) Highest Response Ratio Next
d) First Come First Served

[GATE-2001]

Q.4 Which of the following scheduling
algorithms is non-pre-emptive?
a) Round Robin
b) First-in-First out

c) Multilevel queue Scheduling
d) Multilevel Queue Scheduling

with Feedback
[GATE-2001]

Q.5 Where does the swap space
reside?
a) RAM b) Disk
c) ROM d) On-chip cache

[GATE-2001]

Q.6 Consider Peterson's algorithm for
mutual exclusion between two
concurrent processes I and j. The
program executed by process is
shown below.
repeat flag [i] = true;
turn = j ;
while (P) do no-op;
Enter critical section, perform
actions, then exit critical section
Flag [i] = false;
Perform other non-critical section
actions. Until false;
For the program to guarantee
mutual exclusion, the predicate P
in the while loop should be
a) flag [j]= true and turn = i
b) flag [j] = true and turn = j
c) flag [i]= true and turn = j
d) flag [i] = true and turn = i

[GATE-2001]

Q.7 Which combination of the
following features will suffice to
characterize an operating system
as a multi-programmed operating
system?
A) More than one program may be

loaded into main memory at
the same time for execution.

GATE QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

B) If a program waits for certain
events such as IN/OUT,
another program is
immediately scheduled for
execution.

C) If the execution of a program
terminates, another program is
immediately scheduled for
execution.

a) (A) only b) (A) and (B)
c)(A) and (C) d) (A)(B)and(C)

 [GATE-2002]

Q.8 Draw the process state transition
diagram of an OS in which (i) each
process is in one of the five states:
created, ready, running, blocked
(i.e. sleep or wait). Or terminated,
and (ii) only non- preemptive
scheduling is used by the OS Label
the transitions appropriately.

[GATE -2002]

Q.9 A uni-processor computer system
only has two processes, both of
which alternate 10 ms CPU bursts
with 90 ms IN/OUT bursts. Both
the processes were created at
nearly the same time. The I N/OUT
of both processes can proceed in
parallel. Which of the following
scheduling strategies will result in
the least CPU utilization (over a
long period of time) for this
system?
a) First come first served

scheduling
b) Shortest remaining time first

scheduling
c) Static priority scheduling with

different priorities for the two
processes

d) Round robin scheduling with a
time quantum of 5 ms

 [GATE-2003]

Common Data for Questions 10 and 11:
Suppose we want to synchronize two
concurrent processes P and Q using
binary semaphores S and T. The code for
the processes P and Q is shown below.
Process P
While (1)
{
W :
Print ‘0’;
Print ‘0’;
X :
}
Process Q
while (1)
{
Y :
print ‘1’
print ‘1’
Z :
Synchronization statements can be
inserted only at points W, X, Y and Z.

Q.10 Which of the following will always
lead to an output starting with?
01100110011'?
a) P(S) at W, V(S) at X, P(T) at Y,

V(T) at Z, S and T initially 1
b) P(S) at W, V(T) at X, P(T) at Y,

V(S) at Z, S initially 1 , and T
initially 0

c) P(S) at W, V(T) at X, P(T) at Y,
V(S) at Z, S and T initially 1

d) P(S) at W, V(T) at X, P(T) at Y,
V(T) at Z, S initially 1, and T
initially 0

[GATE-2003]

Q.11 Which of the following will ensure
that the output string never
contains a substring of the form
01𝑛0 or 10𝑛0 where n is odd?
a) P(S) at W, V(S) at X, P(T) at Y,

V(T) at Z, S and T initially 1
b) P(S) at W, V(T) at X, P(T) at Y,

V(S) at Z, S and T initially 1,

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

c) P(S) at W, V(S) at X, P(S) at Y,
V(S) at Z, S initially 1

d) P(S) at W, V(T) at X, P(S) at Y,
P(T) at Z, S and initially 1

 [GATE-2003]

Q.12 Consider the following statements
with respect to user-level threads
and kernel-supported threads:
1. Context switch is faster with

kernel-supported threads.
2. for user-level threads, a system

call can block the entire
process.

3. Kernel supported threads can
be scheduled independently.

4. User level threads are
transparent to the kernel.

Which of the above statements are
true?
a) 2, 3 and 4 b) 2 and 3
c) 1 and 3 d) 1 and 2

 [GATE-2004]

Q.13 Which one of the following is NOT
shared by the threads of the same
process?
a) Stack
b) Address Space
c) File Descriptor Table
d) Message Queue

 [GATE -2004]

Q.14 A process executes the following
code

 for (i=0 ; i < n ; i + +)
fork ();
The number of new processes
created is
a) n b) 2n - 1
c) 2n d) 2n+1 – 1

[GATE-2004]

Q.15 Consider the following set of
processes with the arrival times

and the CPU Burst times given in
millisecond

Process
Arrival
Time

Burst
Time

P1 0 5
P2 1 3

P3 2 3

P4 4 1
What is the average turn-around
time for these processes with the
pre-emptive shortest Remaining
Processing Time First (SRPTF)
algorithm?
a) 5.50 b) 5.75
c) 6.00 d) 6.25

 [GATE-2004]

Q.16 Consider two processes P1 and P2
accessing the shared variables X
and Y protected two binary
semaphores Sx and Sy respectively,
both initialized to 1. P and V
denote the usual semaphore
operators, where P decrements the
semaphore value, and V
increments the semaphore value.
The pseudo-code of P1 and P2 is as
follows:

P1 P2
While true
do{

While true
do{

L1: ……… L3: ………
L2: ……… L4: ………
X=X+1; Y=Y+1;
Y=Y-1; X=Y-1;
V(Sx); V(Sy);
V(Sy); V(Sx);
In order to avoid deadlock, the
correct operators at L1, L2, L3 and
L4 are respectively
a)

y x x yP(S),P(S),P(S),P(S)

b)
x y y xP(S),P(S),P(S),P(S)

c)
x x y yP(S),P(S),P(S),P(S)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d)
x y x yP(S),P(S),P(S),P(S)

[GATE-2004]

Q.17 Suppose n processes, P1, P2...., Pn
share m identical resource units,
which can be reserved and
released one at a time. The
maximum resource requirement of
process Pi is Si where Si>0. Which
one of the following is a sufficient
condition for ensuring that
deadlock does not occur?
a) i,si m 

b) i,si n 

c)
n

i 1

si (m n)


 

 d)
n

i 1

si (m*n)




 [GATE-2005]

Q.18 A user level process in Unix traps
the signal sent on a Ctrl- C input,
and has a signal handling routine
that saves appropriate files before
terminating the process. When a
Ctrl – C input is given to this
process, what is the mode in which
the signal handling routine
executes?
a) kernel mode
b) super user mode
c) privileged mode
d) user mode

[GATE -2005]

Q.19 We wish to schedule three
processes P1, P2 and P3 on a
uniprocessor system. The
priorities, CPU time requirements
and arrival times of the processes
are as shown below.

We have a choice of preemptive or

non-preemptive scheduling. In

preemptive scheduling, a late

arriving higher priority process

can preempt a currently running

process with lower priority. In

non-preemptive scheduling, a late–

arriving higher priority process

must wait for the currently

executing process to complete

before it can be scheduled on the

processor. What are the

turnaround times (time from

arrival till completion) of P2 using

preemptive and no preemptive

scheduling respectively?

a) 30 sec, 30 sec
b) 30 sec 10sec
c) 42 sec 42 sec
d) 30sec 42 sec

[GATE -2005]

Q.20 Two shared resources 1R and 2R

are used by processes 1P and 2P .

Each process has a certain priority
for accessing each resource Let

ijT

denote the priority of iP for

accessing
jR A process iP can

Proces
s

Priority

CPU
time
require
d

Arrival
time
(hh:mm:ss
)

P1
10
(highest
)

20 sec 0:00:05

P2 9 10 sec 0:00:03

P3
8
(lowest)

15 sec 0:00:00

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

snatch a resource kR from process

jP if ikT is greater than
jkT

Given the following:
I. 11 21T T II. 12 22T T

III. 11 21T T IV. 12 22T T

Which of the following conditions
ensures that 1P and 2P can never

deadlock?
a) (I) and (IV) b) (II) and (III)
c) (I) and (II) d)None

[GATE -2005]

Q.21 Consider the following code
fragment:
if (fork () == 0)
{a = a + 5 , printf (“%d, %d\n” , a,
&a),}
else {a=a-5, printf (“%d, %d\n”,a,
&a),}
Let u, v be the values printed by
the parent process, and x, y be the
values printed by the child
process. Which one of the
following is true?
a) u = x + 10 and v = y
b) u = x + 1 and v y

c) u + 10 = x and v = y
d) u + 10 = x and v y

[GATE-2005]

Q.22 Consider three CPU-intensive
processes, which require 10, 20
and 30 time units and arrive at
times 0, 2 and 6, respectively. Haw
many context switches are needed,
if time operating system
implements a shortest remaining
time first scheduling algorithm?
Do not count the context switches
at time zero and at the end.
 a) 1 b) 2
c) 3 d) 4

[GATE-2006]

Q.23 The process state transition
diagram of an operating system is
as give below.

Which of the following must be
FALSE about the above operating
system?
a) It is a multi programmed

operating system
b) It uses preemptive scheduling
c) It uses non preemptive

scheduling
d) It is an multi–user operating

system
[GATE -2006]

Q.24 Consider three processes, all
arriving at time zero, with total
execution time of 10, 20 and 30
units, respectively. Each process
spends the first 20% of execution
time doing IN/OUT, the 'next 70%
of time doing computation, and the
last 10% of time doing IN/OUT
again. The operating system uses a
shortest remaining compute time
first scheduling algorithm and
schedules a new process either
when the at process gets blocked
an IN/OUT or when the running
process finishes its compute burst.
Assume that all IN/OUT operations
can be overlapped as much as
possible. For what percentage of
time does the CPU remain idle?

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) 0% b) 10.6%
c) 30.0% d) 89.4%
 [GATE-2006]

Q.25 Consider three processes (process
id 0, 1, 2 respectively) with
compute time bursts 2, 4 and 8
time units. All processes arrive at
time zero. Consider the Longest
Remaining Time First (LRTF)
scheduling algorithm. In LRTF ties
are broken by giving priority to the
process with the lowest process id.
The average turnaround time is
a) 13 unit b) 14 unit

 c) 15 unit d) 16 unit
 [GATE-2006]

Q.26 Consider the following, snapshot
of a system running n processes.
Process i is holding Xi instances of
a resource R, l≤i≤n. Currently, all
instances of R are occupied.
Further, for all i process i has
placed a request for an additional
Yi instances while holding
the Xi instances it already has.
There are exactly two processes p
and q such that Yp=Yq=0. Which
one of the following can serve as a
necessary condition to guarantee
that the system is not approaching
a deadlock?
a) min (Xp , Xq)<MAX(Yk) where

k<> p and k<> q.

b) Xp+Xq≥Min(Yk) where k<>p &
k<>q.

c) max(Xp , Xq) > 1
d) min (Xp , Xq) > 1

 [GATE-2006]

Q.27 The atomic fetch-and-set x, y
instruction unconditionally sets
the memory location x to 1 and
fetches the old value of x in y
without allowing any intervening

access to the memory location x.
Consider the following
implementation of P and V
functions on a binary semaphore S.
void P (binary_semaphore *s) {

 unsigned y;
 unsigned *x = & (S -> value);
 do {
 -- fetch-and-set x , y;
 } while (y);
 void V (binary_semaphore *S) {
 s -> value = 0 ;
 }

Which one of the following is true?
a) The implementation may not

work, if context switching is
disabled in P

b) Instead of using fetch-and-set,
a pair of normal load/store can
be used

c) The implementation of V is
wrong

d) The code does not implement a
binary semaphore

 [GATE-2006]

Statements for Linked Answer
Questions 28 and 29
Barrier, is a synchronization construct
where a set of processes synchronizes
globally, i.e., each process in the set
arrives at the barrier and waits for all
others to arrive and then all processes
leave the Barrier. Let the number of
processes in the set be 3 and S be a binary
semaphore with the usual P and V
functions.
Consider the following C implementation
of a barrier with line numbers shown on
left :
void Barrier (void) {
1 : p(s) ;
2 : process_arrived ++,
3 : V(S) ;
4 : while (process_arrived != 3);
5 : P(S)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

6 : Process_left++ ;
7 : if (process_left ==3) ; {
8 : process_arrived = 0;
9 : process_left = 0;
10 : }
11 : V(S) ;

}
The variables process arrived and process
left are shared among all processes and
are initialized to zero. In a concurrent
program all the three processes call the
barrier function when they need to
synchronize globally.

Q.28 The above implementation of
barrier is incorrect. Which one of
the following is true?
a) The barrier implementation is

wrong due to the use of binary
semaphore S

b) The barrier implementation
may lead to a deadlock, if two
barrier invocations are
used in immediate succession

c) Lines 6 to 10 need not be inside
a critical section

d) The barrier implementation is
correct, if there are only two
processes instead of three

 [GATE-2006]

Q.29 Which One of the following
rectifies the problem in the
implementation?
a) Lines 6 to 10 are simply

replaced by process arrived
b) At the beginning of the barrier

the first process to enter the
barrier waits until process
arrived becomes zero before
proceeding to execute P(S)

c) Context switch is disabled at
the beginning of the barrier
and re-enabled at the end

d) The variable process left is
made private instead of shared

[GATE-2006]

Q.30 Two processes P1 and P2, need to
access a critical section of code.
Consider the following
synchronization construct used by
the processes:
/*P1 */
While (true) {
 Wants 1 = true ;
 While
(wants 2 == true) ;
/* Critical
Section */
Wants1 = false ;
} (/* Remainder section)
/* P2 */
while (true){
wants 2 = true ;
while (wants1 == true) ;
/* Critical
Section */
Wants2 = false ;
/* Remainder section */
Here, wants1 and wants2 arc
shared variables, which are
initialized to false. Which one of
the following statements is true
about the above construct?
a) It does not ensure mutual

exclusion
b) It does not ensure hounded

waiting
c) It requires that processes enter

the critical section in strict
alternation

d) It does not prevent deadlocks,
but ensures mutual exclusion

 [GATE-2007]

Q.31 List I contains some CPU
scheduling algorithms and List II
contains some applications. Match
entries in List I to entries in List II
using the codes given –below the
lists.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Codes
a) P-3, Q-2, R-1
b) P-1, Q-2, R-3
 c) P-2, Q-3, R-1
d) P-1, Q-3, R-2

 [GATE-2007]

Q.32 Consider the following statements
about user level threads and
kernel level threads: Which one of
the following statements is false?
a) Context switch time is longer for

kernel level threads than for
user level threads

b) User level threads do not need
any hardware support

c) Related kernel level threads can
be scheduled on different
processors in a multi-processor
system

d) Blocking one kernel level thread
Blacks all related threads

 [GATE-2007]

Q.33 An operating system uses Shortest
Remaining Time First (SRTF)
process scheduling algorithm.
Consider the arrival times and
execution times for the following

Process
Execution
Time

Arrival
Time

P1 20 0
P2 25 15
P3 10 30
P4 15 45
Which is the total waiting time for
process P2?

a) 5 b) 15
c) 40 d) 55

 [GATE-2007]

Q.34 A single processor system has
three resources types X, Y and Z,
which are shared by three
processes. There are .5 units of
each resources type. Consider the
following scenario, where the
column alloc denotes the number
of units of each resource type
allocated to each process, and the
column request denotes the
number of units of each resource
type requested by a process in
order to complete execution.
Which of these processes will
finish last?

Alloc request

P0
P1
P2

X
1
2
2

Y
2
0
2

Z
1
1
1

X
1
0
1

Y
0
1
2

Z
3
2
0

a) P0

b) P1

c) P2

d) None of the above, since is in a
deadlock

 [GATE-2007]

Q.35 Which of the following is not true
of dead lock prevention and
deadlock avoidance schemes?
a) In deadlock prevention, the

request for resources is always
granted, if the resulting state is
safe

b) In deadlock avoidance, the
request for resources is always
granted, if the resulting state is
safe

c) Deadlock avoidance is less
restrictive than deadlock
prevention

List I List II
P. Gang

Scheduling
1. Guaranteed

scheduling
Q. Rate

Monotonic
Scheduling

2. Real-time
Scheduling

R. Fair share
Scheduling

3. Thread
Scheduling

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d) Deadlock avoidance requires
knowledge of resource
requirements a priori

[GATE-2008]

Q.36 If the time–slice used in the
round– robin scheduling policy is
more that the maximum time
required to executed any process,
then the policy will
a) degenerate to shortest job first
b)degenerate to priority
scheduling
c) degenerate to first come first

serve
d) None of the above

[GATE -2008]

Q.37 Which of the following statements
about synchronous and
asynchronous IN/OUT is not true?
a) An ISR is invoked on

completion of IN/OUT in
synchronous IN/OUT but not in
asynchronous IN/OUT

b) In both synchronous and
asynchronous IN/OUT, an ISR.
(Interrupt Service Routine) is
invoked after completion of the
IN/OUT

c) A process making a synchronous
IN/OUT call waits until IN/OUT
is complete, but a process
making an asynchronous
IN/OUT call does not wait for
completion of the INI/OLT

d) in the case of synchronous
IN/OUT, the process waiting
for the completion of IN/OUT is
woken up by the ISR that is
invoked after the completion of
I IN/OUT

 [GATE-2008]

Q.38 A process executes the following
code for (i =0,i<n;i++)fork ();

The total number of child
processes created is

a) n b) n2 1

c) n2 d) n 12 1 
[GATE -2008]

Q.39 The P and V operations on
counting semaphores, where s is a
counting semaphore, are defined
as follows
P(s) : s = s - 1;
If s < 0 then wait;
V(s) : s = s + 1;
if s <= 0 then wake up a process
waiting on s;
Assume that Pb and Vb the wait and
signal operations on binary
semaphores are provided. Two
binary semaphores Xb and Yb are
used to implement the semaphore
operations P(s) and V(s) as follows
P(S) : Pb, (Xb);
S = s-1 ;
If (s < 0) (
Vb (Xb) ;
Vb (Yb) ;
}
Else Vb (Xb) ;
 V(S) : Pb (Yb) ;
S = s + 1 ;
If (s <= 0) Vb (Yb) ;
Vb (Xb) ;
The initial values of Xb, and Yb are
respectively
a) 0 and 0 b) 0 and 1
c) 1 and 0 d) 1 and 1

[GATE-2008]

Q.40 In the following process state
transition diagram for a
uniprocessor system, assume that
there are always some processes
in the ready state.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Now consider the following
statements:
1. If a process makes a transition

D, it would result in another
process making transition A
immediately.

2. A process P2 in blocked state
can make transition E while
another process P1 is in
running state

3. The operating system uses pre-
emptive scheduling.

4. The operating system uses
non-pre-emptive scheduling.

Which of the above statements are
true?
a) 1 and 2 b) 1 and 3
c) 2 and 3 d) 2 and 4

 [GATE-2009]

Q.41 The enter CSO and leave CSO
functions to implement critical
section of a process are realized
using test-and set instruction as
follows
void enter_CSC(X)
{
while (test-and-sex (X));
}
void leave (X)
{
X = 0;
}
In the above solution, X is a
memory location associated with
the CS and is initialized to 0. Now,
consider the following statements:

1. The above solution to CS
problem is deadlock-free.

2. The solution is starvation-free.
3. The processes enter CS in FIFO

order.
4. More than one processes can

enter CS at the same time
Which of the above statements is
true?
a) 1 only b) 1 and 2
c) 2 and 3 d) 4 only

 [GATE-2009]

Q.42 Consider a system with 4 types of
resources R1 (3 unit), R2 (2 Unit),
R3 (3 unit), R4 (2 unit). A non-pre-
emptive resource allocation policy
is used. At any given instance, a
request is not entertained if it
cannot be completely satisfied.
Three processes P1, P2, P3 request
the resources as follows, if
executed independently.

Which one of the following
statements is true, if all three
processes run concurrently
starting at time t=0?
a) All processes will finish

without any deadlock
b) P1 and P2 will be in deadlock
c) P1 and P3 will be in a deadlock
d) All three processes will be in

deadlock
 [GATE-2009]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.43 A system has n resources R0,.....,Rn-

1, & k processes P0,.....,Pk-1. The
implementation of the resources
request logic of each process P1, is
as follows
If (i % 2 = = 0) {

if (i < n) request Ri ;
if (i + 2 < n) request R1+2 ;

}
 Else {

if (i < n) request Rn-1 ;
if (i + 2 < n) request Rn-i-2 ;

 }
In which one of the following
situations is a deadlock possible?
a) n = 40, k = 26 b) n= 21, k =

12
c) n = 20, k = 10 d) n= 41, k =
19

 [GATE-2010]

Q.44 Consider the methods used by
processes P1 and P2 for accessing
their critical sections whenever
needed, as given below. The initial
values of shared Boolean variables
S1 and S2 are randomly assigned.

Method used by
P1

Method used by
P2

While(S1==S2); While(S1!=S2);
Critical section Critical section
S1=S2; S2=not(S1);

Which one of the following
statements describes the
properties achieved?
a) Mutual exclusion but not

progress
b) Progress but not mutual

exclusion
c) Neither mutual exclusion nor

progress
d) Both mutual exclusion &

progress

 [GATE-2010]

Q.45 The following program consists of
3 concurrent processes and 3
binary semaphores. The
semaphores are initialized as S0
=1, S1 = 0, S2 = 0.

Process
P0

Process
P1

Process
P2

Wait(S0); Wait(S1); Wait(S2);
Print’0’ Release

(S0);
Release
(S0);

Release
(S1);
Release
(S2);
}

How many times will process P0
print 'O'?
a) Atleast twice
b) Exactly twice
c) Exactly thrice
d) Exactly once

 [GATE-2010]

Q.46 Which of the following statements
are true?
I. Shortest remaining time first

scheduling may cause
starvation.

II. Pre-emptive scheduling may
cause starvation. III. Round
robin is better than FCFS in
terms of response time.

a) I only b) I and III
c) II and III d) I, II and III

 [GATE-2010]

Q.47 Let the time taken to switch
between user and kernel modes of
execution be t1 while the time
taken to switch between two
processes be t2 which of the
following is true?
a) t1 > t2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

b) t1 = t2

c) t1 < t2

d) Nothing can be said about the
relation between t1 and t2

 [GATE-2011]

Q.48 A computer handles several
interrupt sources of which of the
following are relevant for this
question? Interrupt from CPU
temperature sensor

 Interrupt from Mouse
 Interrupt from Keyboard
 Interrupt from Hard Disk
Which one of these will be handled
at the HIGHEST priority?
a) Interrupt from Hard Disk
b) Interrupt from Mouse
c) Interrupt from Keyboard
d) Interrupt from CPU

temperature sensor
 [GATE-2011]

Q.49 A thread is usually defined as a
‘light weight process' because an
Operating System (OS) maintains
smaller data structures for a
thread than for a process. In
relation to this, which of the
following is true?
a) On per thread basis, the

operating system maintains
only CPU register state

b) The operating system does not
maintain a separate stack for
each thread

c) On per thread basis, the
operating system does not
maintain virtual memory state

d) On per thread basis, the
operating system maintains
only scheduling and
accounting information

[GATE-2011]

Q.50 Consider the following table of
arrival time and burst time for
three processes

 Po, P1 and P2.

Process
Arrival
Time

Burst
Time

P1 0 ms 9 ms
P2 1 ms 4 ms
P3 2 ms 9 ms
The pre-emptive shortest job first
scheduling algorithm is used.
Scheduling is carried out only at
arrival or completion of processes.
What is the average waiting time
for the three processes?
a) 5.0 ms b) 4.33 ms
c) 6.33 ms d) 7.33 ms

 [GATE-2011]

Q.51 A process executes the code
fork () ;
fork () ;
fork () ;
The total number of child
processes created is
a) 3 b) 4
c) 7 d) 8

 [GATE-2012]

Q.52 Consider the 3 processes, P1, P2
and P3 shown in the table:

Process
Arrival
Time

Time units
required

P1 0 5
P2 1 7
P3 3 4
The completion order of the 3
processes under the policies FCFS
and RR2 (Round Robin scheduling
with CPU quantum 2 time units)
are

a) FCFS : P1 , P2 , P3 RR2 : P1 , P2 , P3

b) FCFS: P1 , P3 , P2 RR2 : P1 , P3 , P2

c) FCFS: P1 , P2 , P3 RR2 : P1 , P3 , P2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d) FCES: P1 , P2 , P3 RR2 : P1 , P2 , P3

[GATE-2012]

Q.53 Fetch_And_Add (X, i) is an atomic
Read-Modify-Write instruction
that reads the value of memory
location X, increments it by the
value i and returns the old value of
X. It is used in the pseudo code
shown below to implement a busy-
wait lock. L is an unsigned integer
shared variable initialized to 0.
The value of 0 corresponds to lock
being available, while any non-
zero value corresponds to the lock
being not available.
AcquireLock (L) {
While (Fetch_And_Add (L, 1)}
 L = 1;
}
ReleaseLock (L) {
L = 0;
}
This implementation
a) fails as L can overflow
b) fails as L can take on a non-

zero value that lock is actually
available

c) works correctly but may starve
some processes

d) works correctly without
starvation

 [GATE-2012]

Q.54 Three concurrent processes X, Y
and Z execute three different code
segments that access and update
certain shared variables. Process X
executes the P operation (i.e., wait)
on semaphores a, b and c; process
Y executes the P operation on
semaphores b, c and d; process Z
executes the P operation on
semaphores c, d and a before
entering the respective code
segments. After completing the

execution of its code Segment,
each process invokes the V,
operation (i.e., signal) on its three
semaphores. All semaphores are
binary semaphores initialized to
one. Which one of the following
represents a deadlock-free order
of invoking the P operations by the
processes?
a) X : P(a) P(b) P(c) Y : P(b) P(c)

P(d) Z : P(c) P(d) P(a)
b) X : P(b) P(a) P(c) Y : P(b) P(c)

P(d) Z : P(a) P(c) P(d)
c) X : P(b) P(a) P(c) Y : P(c) P(b)

P(d) Z : P(a) P(c) P(d)
d) X : P(a) P(b) P(c) Y : P(c) P(b)

P(d) Z : P(c) P(d) P(a)
 [GATE-2013]

Q.55 A scheduling algorithm assigns
priority proportional to the
waiting time or a process. Every
process starts with priority zero
(the lowest priority). The
scheduler re-evaluates the process
priorities every T time units and
decides the next process to
schedule. Which one of the
following is true if the processes
have no I/O operations and all
arrive at time zero?
a) This algorithm is equivalent to

the first come first serve
algorithm

b) This algorithm is equivalent to
the round robin algorithm

c) This algorithm is equivalent to
the shortest job first algorithm

d) This algorithm is equivalent to
the shortest remaining, time
first algorithm

[GATE-2013]

Q.56 A shared variable x, initialized to
zero, is operated on by four
concurrent processes W, X, Y, Z as

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

follows. Each of the processes W
and X reads x from memory
increments by one, Stores it to
memory, and then terminates.
Each of processes Y, and Z
reads x from memory, decrements
by two, stores it to memory and
then terminates. Each process
before reading x Invokes the P
operation (i.e., wait) on a counting
semaphore S after storing x to
memory. Semaphore S is initialized
to two. What is the maximum
possible value of x after all
processes complete execution?
a) -2 b) -1
c) 1 d) 2

 [GATE-2013]

Q.57 A certain computation generates
two arrays a and b such that a [1] =
f(i) for 0≤I<n and b[i] = g {a [i]} for
0≤ I < n. Suppose this computation
is decomposed into two
concurrent processes X and Y such
that X computes the array a and Y
computes the array b. The
processes employ two binary
semaphores R and S, both
initialized to zero. The array is
shared by the two processes. The
structure of the processes are
shown below.
Process X:
Private 1:
for (i= 0; i< n; i++) {
a[i] = f (i) ;
Exit X (R, S) ;
}
Process Y:
private i;
for (i= 0; i< n; i++)
{
Entry y (R, S) ;
b[i] = g (a [i]) ;
}

Which one of the following
represents the correct
implementations of Exit X and
Entry Y ?
a) ExitX (R, S) {

P(R) ;
V(S) ;
}
EntryY (R, S) {
P(S) ;
V(R) ;
}

b) ExitX (R, S) {
V(R) ;
V(S) ;
}
EntryY (R, S) {
P(R) ;
P(S) ;
}

c) ExitX (R, S) {
P(S) ;
V(R) ;
}
EntryY (R, S) {
V(S) ;
P(R) ;
}

d) ExitX (R, S) {
V(R) ;
P(S) ;
}
EntryY (R, S) {
V(S) ;
P(R) ;
}

 [GATE-2013]

Q.58 Consider the procedure below for
the Producer-Consumer problem
which uses semaphores:-

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Which one of the following is
TRUE? The producer will be able
to add the item to the buffer, but
the consumer can never consume
it. The consumer will remove no
more than one item from the
buffer. Deadlock occurs if the
consumer succeeds in acquiring
semaphore “s” when the buffer is
empty. The starting value for the
semaphore “n” must be 1 and not 0
for deadlock-free operation.

[GATE–2014]

Q.59 Which of the following is FALSE?
a) User level threads are not

scheduled by the kernel.
b) When a user level thread is

blocked, all other threads of its
process are blocked.

c) Context switching between
user level threads is faster than
context switch between kernel
level threads.

d) Kernel level threads cannot
share code segment.

[GATE–2014]

Q.60 Consider the following set of
processes that need to be
scheduled on a single CPU. All the
times are given in milliseconds.

Process
Arrival
Time

Execution
Time

A 0 6
B 3 2
C 5 4
D 7 6
E 10 3

Using the shortest remaining time
first scheduling algorithm, the
average turnaround time (in m
sec) is___.

 [GATE–2014]

Q.61 Three processes A, B and C each
execute a loop of 100 iterations. In
each iteration of the loop, a
process performs a single
computation that requires tc CPU
milliseconds and then initiates
single I/O operation that lasts for
tio milliseconds. It is assumed that
the computer where the processes
execute has sufficient number of
I/O devices and the OS of the
computer assigns different I/O
devices to each process. Also, the
scheduling overhead of the OS is
negligible. The processes have the
following characteristics:

Process
Id

tc tio

A 100 ms 500 ms
B 350 ms 500 ms
C 200 ms 500 ms

The processes A, B, and C are
started at times 0, 5, and 10
milliseconds respectively in a pure
time sharing system [round robin
scheduling] that uses a time slice
of 50 milliseconds. The time in
milliseconds at which process “C”
would complete its first I/O
operation is ___________

 [GATE–2014]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.62 An operating system uses shortest
remaining time first scheduling
algorithm for pre-emptive
scheduling of processes. Consider
the following set of processes with
their arrival times and CPU burst
times (in milliseconds):

Process
Arrival
Time

Burst
Time

P1 0 12
P2 2 4
P3 3 6
P4 8 5

The average waiting time (in
milliseconds) of the processes is
_______.

[GATE–2014]

Q.63 An operating system uses the
Banker’s algorithm for deadlock
avoidance when managing the
allocation of three resource types X,
Y, and Z to three processes P0, P1,
and P2. The table given below
presents the current safe state.
Here, the Allocation matrix shows
the current number of resources of
each type allocated to each process
and the Max matrix shows the
maximum number of resources of
each type required by each process
during its execution

Process Allocation Max Needs
X Y Z X Y Z

P0 0 0 1 8 4 3
P1 3 2 0 6 2 0
P2 2 1 1 3 3 3
There are 3 units of type X, 2 units
of type Y, and 2 units of type Z still
available. The system is currently
in a safe state. Consider the
following independent requests
for additional resources in the
current state:

REQ1: P0 requests 0 units of X, 0
units of Y, and 2 units of Z
REQ2: P1 requests 2 units of X, 0
units of Y, and 0 units of Z
Which one of the following is
TRUE?
a) Only REQ1 can be permitted
b) Only REQ2 can be permitted
c) Both REQ1 and REQ2 can be

permitted
d) Neither REQ1 nor REQ2 can be

permitted.
[GATE–2014]

Q.64 A system contains three programs
and each requires three tape units
for its operation. The minimum
number of tape units which the
system must have such that
deadlocks never arise is ____

[GATE–2014]

Q.65 A system has 6 identical resources
and N processes competing for
them. Each process can request at
most 2 resources. Which one of the
following values of N could lead to
a deadlock?
a) 1 b) 2
c) 3 d) 4

 [GATE–2015]

Q.66 Consider the following policies for
preventing deadlock in a system
with mutually exclusive resources.
I. Processes should acquire all

their resources at the
beginning of execution. If any
resources acquired so far are
released.

II. The resources are numbered
uniquely, and processes are
allowed to request for
resources only in increasing
resource numbers.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

III.The resources are numbered
uniquely, and processes are
allowed to request for
resources only in decreasing
resource numbers.

IV. The resources are numbered
uniquely. A process is allowed
to request only for a resource
with resource number larger
than it’s currently held
resources.

Which of the above policies can be
used for preventing deadlock?
a) Any one of I and III but not II or

IV
b) Any one of I, III, and IV but not

II
c) Any one of II and III but not I or

IV
c) Any one of I, II, III, and IV

[GATE–2015]

Q.67 Consider a uniprocessor system
executing three tasks T1, T2 and
T3, each of which is composed of
an infinite sequence of jobs (or
instances) which arrive
periodically at intervals of 3, 7 and
20 milliseconds, respectively. The
priority of each task is the inverse
of its period and the available
tasks are scheduled in order of
priority, with the highest priority
task scheduled first. Each instance
of T1, T2 and T3 requires an
execution time of 1, 2 and 4
milliseconds, respectively. Given
that all tasks initially arrive at the
beginning of the 1st millisecond
and task preemptions are allowed,
the first instance of T3 completes
its execution at the end of
____________ milliseconds.

[GATE–2015]

Q.68 The maximum number of
processes that can be in Ready
state for a computer system with n
CPU’s is
a) n b) n2

c) 2n d) Independent of n
[GATE–2015]

Q.69 For the processes listed in the
following table, which of the
following scheduling schemes will
the lowest average turnaround
time?

PROCESS
ARRIVAL
TIME

PROCESSING
TIME

A 0 3
B 1 6
C 4 4
D 6 2

a) First Come First Serve
b)Non-preemptive Shortest Job
First
c) Shortest Remaining Time
d) Round Robin with Quantum
value two

[GATE–2015]

Q.70 Two processes X and Y need to
access a critical section. Consider
the following synchronization
construct used by both the
processes

Here, var P and varQ are shared
variables and both are initialized

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

to false. Which one of the following
statements is true?
a) The proposed solution

prevents deadlock but fails to
guarantee mutual exclusion

b) The proposed solution
guarantees mutual exclusion
but fails to prevent deadlock

c) The proposed solution
guarantees mutual exclusion
and prevents deadlock

d) The proposed solution fails to
prevent deadlock and fails to
guarantee mutual exclusion

[GATE–2015]

Q.71 Consider the following proposed
solution for the critical section
problem. There are n processes:
P0........Pn−1. In the code, function
pmax returns an integer not
smaller than any of its arguments.
For all i, t[i] is initialized to zero.
Code for Pi:
do {
c[i]=1; t[i] = pmax(t[0],...,t[n-1])+1;
c[i]=0;
for every j ≠ i in {0,...,n-1}
{
while (c[j]);
while (t[j] != 0 && t[j]<=t[i]);
}
Critical Section;
t[i] = 0;
Remainder Section;
} while (true);
Which one of the following is
TRUE about the above solution?
a) At most one process can be in

the critical section at any time
b) The bounded wait condition is

satisfied
c) The progress condition is

satisfied
d) It cannot cause a deadlock

[GATE–2016]

Q.72 Consider the following two-
process synchronization solution

Process 0 Process 1
Entry:loop
while(turn==1);

Entry:loop
while(turn==0);

(critical section) (critical section)
Exit: turn=1; Exit: turn=0;

The shared variable turn is
initialized to zero.
Which one of the following is
TRUE?
a) This is a correct two-process

synchronization solution.
b) This solution violates mutual

exclusion requirement.
c) This solution violates progress

requirement.
d) This solution violates bounded

wait requirement
[GATE–2016]

Q.73 Consider a non-negative counting
semaphore S. The operation P(S)
decrements S, and V(S) increments
S. During an execution, 20 P(S)
operations and 12 V(S) operations
are issued in some order. The
largest initial value of S for which
at least one P(S) operation will
remain blocked is______.

[GATE–2016]

Q.74 Consider an arbitrary set of CPU-
Bound processes with unequal
CPU burst lengths submitted at the
same time to a computer system.
Which one of the following process
scheduling algorithms would
minimize the average waiting time
in the ready queue?
a) Shortest remaining time first
b) Round-robin with time

quantum less than the shortest
CPU burst

c) Uniform random

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

d) Highest priority first with
priority proportional to CPU
burst length

[GATE–2016]

Q.75 Consider the following processes,
with the arrival time and the
length of the CPU burst given in
milliseconds. The scheduling
algorithm used is preemptive
shortest remaining-time first.

Process
Arrival
Time

Burst
Time

P1 0 10
P2 3 6
P3 7 1
P4 8 3

The average turnaround time of
these processes is _______
milliseconds.

[GATE–2016]

Q.76 Threads of a process share
a) global variables but not heap
b) heap but not global variables
c) neither global variables nor
heap
d) both heap and global variables

[GATE–2017]

Q.77 Consider the following CPU
processes with arrival time (in
milliseconds) and length of CPU
bursts (in milliseconds) as given
below:
Process Arrival

time
Burst
time

P1 0 7
P2 3 3
P3 5 5
P4 6 2
If the pre-emptive shortest
remaining time first scheduling
algorithm is used to schedule the
process, then the average waiting

time across all processes is_______
milliseconds.

[GATE–2017]

Q.78 A multithreaded program P
executes with x number of threads
and uses y number of locks for
ensuring mutual exclusion while
operating on shared memory
locations. All locks in the program
are non- reentrant. i.e. if a thread
holds a lock l. then it cannot re-
acquire lock l without releasing it,
If thread is unable to acquire a
lock , it blocks until the lock
becomes available. The Minimum
value of x and the minimum value
of y together for which execution
of P can result in a deadlock are:
a) x= 1,y= 2 b) x= 2, y=1
c) x=2, y=2 d)x=1,y=1

[GATE–2017]

Q.79 Which of the following is/are
shared by all the threads in a
process?
I. Program counter II. Stack
III. Address space IV. Registers
a) I and II only b) III only
c) IV only d)III & IV only

[GATE–2017]

Q.80 Consider the set of processes with
arrival time (in milliseconds), CPU
burst time (in milliseconds), ad
priority (0 is the highest priority)
shown below. None of the
processes have IO burst time

Process Arrival
Time

Burst
Time

Priority

P1 0 11 2
P2 5 28 0
P3 12 2 3
P4 2 10 1
P5 9 16 4

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The average waiting time (in
milliseconds) of all the processes
using preemptive priority
scheduling algorithm is ___.

[GATE–2017]

Q.81 A system share 9 type drives. The
current allocation and maximum
requirement of tape drives for
three process are shown below:

Process Current
Allocation

Max.
Requirement

P1
P2
P3

3
1
3

7
6
5

Which of the following best
describes current state of the
system?
a) Safe , Deadlocked
b)Safe Not Deadlocked
c) Not Safe , Deadlocked
d)Not Safe , Not Deadlocked

[GATE–2017]

Q.82 Consider a system with 3
processes that share 4 instances of
the same resource type. Each
process can request a maximum of
K instances. Resource instances
can be requested and released
only one at a time. The largest
value of K that will always avoid
deadlock is___________.

[GATE–2018]

Q.83 In a system, there are three types
of resources: 0 E, F and G. Four
processes P0, P1, P2 and P3 execute
concurrently. At the outset, the
processes have declared their
maximum resource requirements
using a matrix named Max as given
below. For example, Max [P2,F] is

the maximum number of instances
of F that P2 would require. The
number of instances of the
resources allocated to the various
processes at any given state is
given by a matrix named
Allocation. Consider a state of the
system with the Allocation matrix
as shown below, and in which 3
instances of E and 3 instances of F
are the only resources available.

From the perspective of deadlock
avoidance, which one of the
following is true?

a) The system is in safe state.
b) The system is not in safe state,

but would be safe if one more
instance of E were available

c) The system is not in safe state,
but would be safe if one more
instance of F were available

d) The system is not in safe state,
but would be safe if one more
instance of G were available

[GATE–2018]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) (d) (b) (b) (b) (b) (b) - (a) (b) (c) (b) (a) (b) (a)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(d) (c) (d) (d) (c) (c) (b) (b) (b) (a) (b) (a) (b) (b) (d)

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

(a) (d) (b) (c) (a) (c) (a) (b) (c) (c) (a) (a) (b) (a) (a)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(d) (c) (d) (c) (a) (c) (c) (b) (b) (b) (d) (c) (c) (d) 7.2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1000 5.5 (b) 7 4 (d) 12 (d) (c) (a) (a) (c) 7 (a) 8.25

76 77 78 79 80 81 82 83

(d) 3 (c) (b) 29 (b) 2 (a)

Q.1 (c)
To execute privileged instructions,
system services can be obtained
using software interrupt.

Q.2 (d)
Because we want to change the
mode from privileged to non-
privileged, to the next instruction
to be executed should be non-
privileged instruction.

Q.3 (b)
Throughput is defined as the

measure of the number of

processes completed per unit time

and if the CPU is busy in executing

some process than the work is

being done. If the number of

processors is increased then

amount of work done is increased

and time is decreased. In case of

uni-processor first come first serve

gives the maximum throughput

but when the case of known run-

time is considered shortest job

first is used which is also used in

case of turn around. :

Q.4 (b)
Non-pre-emption means that once
the CPU has been allocated to a
process, the process keeps the CPU
until it releases the CPU either by
terminating the process or by
switching to waiting state. Thus,
FIFO, i.e., first in first out algorithm
is non-pre-emptive as it does not

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

pre-empty the CPU while it is been
executed.

Q.5 (b)
Swapping requires a backing store
which is commonly a disk. Swap
space is used by the operating
system in many ways. These
spaces are put on separate disks so
that the load on the input system
can be distributed over the system
input devices.

Q.6 (b)
The condition of mutual exclusion
is satisfied when single data is
sharable with more than one
processor.
For the given program, the
following should be executed:

 Flag (i) = true;
 Turn = j;
 Then, flag (j) = true
 Turn = j

 Now, to enter into the critical
section, first flag should be true
and then, turn should be done.

Q.7 (b)

Both A and B conditions are
necessary to characterize an
operating system as a multi
programmed operating system.
Option C) is characteristic of both
multi programmed and single
programmed OS.

Q.8 Just draw the diagram by using all

criteria as below:

Q.9 (a)

FCFS produces least CPU
utilization when two: processes do
both IN/OUT and computing
whereas round robin produces
maximum CPU utilization.

Q.10 (b)
 Let’s initialize S = 1 and T = 0.

 This initialization will produce a
sequence of processes P, Q, P, Q...
Therefore, P (S) at W, V (T) at X
P (T) at Y, V(S) at Z

Q.11 (c)

As per the given and the answer
found in previous answer,

 S is initialized to 1.
 The code for process P and process

Q is given as
 Process P: Process Q:
 Whiled) { While (1) {
 W: P(S) Y: P(S)
 Print'0'; Print'1';’
 Print'0'; Print'1'
 X: V(S) Z: V(S)
 } }

Now, in the code,
 In process P,

 P(S) is inserted at W and V(S) is
inserted at X in

 process P.
 In process Q,

 (S) is inserted at Y and V(S) is
inserted at Z

Q.12 (b)

Statement I False: The context
switch is slower with kernel
supported threads.
Statement II True: For user level
threads, a system call can block the
entire system. The statement is
true as it is the drawback of user

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

level threads blocking system call
can block the entire process.
Statement III True: Kernel
supported threads can be
scheduled independently as kernel
supported threads have their own
areas thus, are scheduled
independently.
Statement IV False: User level
threads can never be transparent
to the kernel.

Q.13 (a)
Stack and registers are not shared
by the threads of the same process
while address space, message
queue etc, are shared.

Q.14 (b)
We know that the total number of
processes is 2n but we subtract the
main process therefore, total
number of children = 2n - 1

Q.15 (a)
 chart for SRPT algorithm is

 Turnaround time
 P1 =12
 P2 =4-1=3
 P3 = 6
 P4 =1

 Average =12 + 3 + 6 +
1 22

5.50
4 4
 

Q.16 (d)

Let us assume that P means wait
and V means signal. When P1
issues signal wait(x) at that time,
process P2 issues wait (y). So, like
this we take alternatively then
there will be no chance of
'deadlock. So, the sequence is

       X Y X YP S ,P S ;P S ,P S .

Q.17 (c)
In the extreme condition, all
processes acquire Si-1 resources
and need 1 more resource. So
following condition must be true
to make sure that deadlock never

occurs. So
n

i 1

Si (m n)


  .

Q.18 (d)
When user level process trapping
the Ctrl+ C signal then the trap
signal is going through system call
and that’s why mode changed to
kernel mode from user mode and
then the request is handling. One
more thing kernel mode and
privilege mode are same; answer
is kernel mode (privilege mode).

Q.19 (d)
TAT=Completion Time –Arrival
Time. The Gantt chart for Non
Preemptive scheduling will be (0)
P3, (15) P1, 35 P2 (45).
From above this can be inferred
easily that completion time for P2
is 45, for P1 is 35 and P3 is 15.
Gantt Chart for Preemptive (0) P3,
(1) P3, (2) P3, (3) P2, (4)
P2,(5)P1,(25)P2,(33)P3(45).
Similarly take completion time
from above for individual process
and subtract it from the Arrival
time to get TAT.

Q.20 (c)
By following I and II conditions the
process P1 will get both the
resources R1 and R2.
If R1 and R2 are allocated to the
Process P1, then it will compete its
job and release it. After that
process P2 will get both the
resource and complete its Job

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.21 (c)
Fork () returns 0 in child process
and process ID of child process in
parent process. In Child (x),a=a+5
In Parent (u), a=a–5; Therefore
x=u+10. The physical addresses of
‘a’ in parent and child must be
different. But our program
accesses virtual addresses
(assuming we are running on an
OS that uses virtual memory). The
child process gets an exact copy of
parent process and virtual address
of ‘a’ doesn’t change in child
process. Therefore, we get same
addresses in both parent and child.

Q.22 (b)

Context switches are required only
at the time during the switching
over to some other process. Let the
three given processes be P1, P2 and
P3.

Process Arrival time Burst time

P1 0 10
P2 2 20
P3 6 30

 The chart for SRTF scheduling
 algorithm is

P1 P2 P3
 0 10 30 60
So, there are only two context
switches required,
i.e. at the time unit 10 context
switch from P1 to P2 and at the
time unit 30 context switch from
P2 to P3.

Q.23 (b)
If it were a preemptive scheduling
then there would have been a
transition from running state to
Ready state to Ready state. So it is
non–preemptive scheduling

Q.24 (b)

Process
Total
burst
time

I/O
time

CPU
time

I/O
time

P1 10 2 7 1
P2 20 4 14 2
P3 30 6 21 3

 The Gantt chart is

Idle P1 P2 P3 Idle

 0 2 9 23 44 47
Total time spent = 47
Idle time = 2+3=5
Percentage of idle time =
(5/47)*100=10.6%

Q.25 (a)

Gantt chart for LRTF CPU
scheduling algorithm is

P
0

P
1

P
2

P
2

P
2

P
2

P
2

P
1

P
2

P
1

P
2

P
0

P
1

P
2

 0 1 2 3 4 5 6 7 8 9 10 11 12
13 14

 Turn around time
 P0 =12-0=12

 P1 =13-1=12
 P2 =14-2=12

 Average
36

12 ~ 13
3

 

Q.26 (b)

Since both p and q don’t need
additional resources, they both can
finish and release Xp + Xq
resources without asking for any
additional resource. If the
resources released by p and q are
sufficient for another process
waiting for Yk resources, then
system is not approaching
deadlock.

Q.27 (a)
The P and V functions are given
from that we determine that fetch
and set instructions always set the
memory location x to 1 and fetches

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

the old value of x into y. S takes
only 2 values either 0 or 1 when 5
is initialized to 0, statement 3 will
start at location x with this value
and fetch-set instruction change
the value of x from 0 to 1 and y
becomes 0. If more than 2
processes were there and context
switching was disabled in P then
this won't work properly.

Q.28 (b)
From the given implementation it
is determined that statement (b) is
correct due to line 3 and 7 in the
implementation given.

Q.29 (b)

To rectify the problem, statement
(b) is true and is required Qution
to the problem.

Q.30 (d)
Wants2 enters the critical section,

if process '

1Ps variable wants1 is

true and if wants2 is true then
wants1 enters critical section. In
both cases, there will be deadlock
but no mutual exclusion.

Q.31 (a)
 The correct matching is as shown

 List I List II

P. Gang
Scheduling

1 Thread
Scheduling

Q. Rate
Monotonic
Scheduling

2 Real-time
Scheduling

R. Fair share
Scheduling

3 Guaranteed
scheduling

Q.32 (d)

Blocking one kernel level threads
does not block all related threads.
In kernel level threads, in blocking

system call, it can happen with the
kernel that another thread is
scheduled while kernel is
executing.

Q.33 (b)

Gantt chart for SRT is waiting time
of process P2 is given as

 (20-15) + (40-50), i.e. 15

Q.34 (c)

From the given matrix we found
that the number of available
resources of X, Y and Z types are 0,
1, and 2 respectively. Therefore, P1
will avail these resources first and
after release the resources
available will be (2, 1, 3) which
will be used by P0 as its request is
of 1, 0, 3 resources. After P0
release the resources, the
availability becomes (3, 3, 4) and
P2 will use these resources then as
per its requirements. Thus, P2
finishes in the last.

Q.35 (a)

Deadlock prevention does not
guarantee the state that the state
would be safe when the request
for resources is granted instead it
is guaranteed by deadlock
avoidance and there will be no
deadlock at that time.

Q.36 (c)
 When time quantum used in round

robin scheduling is more than
maximum time required to execute
any process then its behave like
first come first serve.

Q.37 (a)

In both Synchronous and
Asynchronous, an interrupt is
generated on completion of I/O. In

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Synchronous, interrupt is
generated to wake up the process
waiting for I/O. In Asynchronous,
interrupt is generated to inform
the process that the I/O is
complete and it can process the
data from the I/O operation.

Q.38 (b)

Fork () system call creates the
child process initially number of
processes is 0. After first fork (), it
creates a single process. After
second fork (), it creates one
parent and two child processes.
After n+1 fork (), the total number
of process is 2n but we subtract
the main process then total

number of child processes is n2 1

Q.39 (c)
From the given code we get that P
(S) and V(S), decrement and
increment the value of semaphore
respectively. So, from the given
conditions we conclude that to
avoid mutual exclusion in the
value of Xb should be 1 and that of
Yb should be 0.

Q.40 (c)
A processor using pre-emptive
scheduling keeps the CPU and
releases it when it is switching to
waiting state which is indicated by
transition C and also a process in
blocked state can make transition
E while other process is in running
state.

Q.41 (a)
The given program initializes the
memory location X to 0 in the test
and set instruction and in the
function leaves CS().

Q.42 (a)
 Available resources at the start are
 R1 R2 R3 R4
 3 2 3 2

Here, as per given table, we need
to construct the working of each
process.

 Time frame is t = 0 to t=10

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

This way there is no deadlock
occurred here and all the
processes are finished.

Q.43 (b)
Considering the options and their
outcome, deadlock occurred in
option (b):

 P0 requires R0nR2,
 P1 requires R20nR18,

going on in this series—P8 will
require R8nR10,

 P9 will requireR12nR10,
 P10 will require R10nR12 and
 P11 will require R10nR8.

 R10 is common requirement for
last 4 processes at a time and thus,
it will lead to deadlock.
Since, last 4 processes and
demanding the R10, deadlock is
unavoidable.

Q.44 (a)
As per the methods provided in
process 1 and process 2, the
process 1 and process 2
cannot exist simultaneously in the
critical section. So, when the
process A is in the critical section,
process B is not and thus, the
condition of mutual exclusion is
satisfied but not progress.

Q.45 (a)

P0 uses a semaphore. Hence,
anything whose value is 1, P0 will
print 'O'. After the release of S1
and S2, we observe that either P1
or P2 will release P0
so that it prints '0' at least 2 times.
Therefore, it is concluded that
neither P1 nor P2 will go, it is the P0
that prints '0' 2 times at least.

Q.46 (d)
Statement I True: The shortest
job selects the waiting process
with the smallest execution time to
execute next. Shortest job next
maximizes process throughput at
the number of processes
completed in a given time is the
maximum. Thus, the average
waiting time is for a process is
minimized. The disadvantage here
is that it also permits process
starvation for the processes that
take long time to complete in a
condition that short processes are
continually added to the queue.
Statement II True: Pre-emptive
algorithms are driven by the
prioritized computation. The
process with the highest priority is
the one that is currently using the
processor. If a process is currently
using the processor and a new
process with a higher priority
enters, the process on the
processor should be removed and
returned to the ready list until its
priority becomes the highest-
priority process.
Statement III True: Round robin
has a better response time than
FCFS. Round robin calls for the
distribution of the processing time
equitably among all processes
requesting the processor. Run
process for one time slice, and then
move to back of queue. Each
process gets equal share of the CPU.
Most systems use some variant of
this. All statements are true.

Q.47 (c)

Process switching involves mode
switch. Context switching can
occur only in kernel mode. t1 < t2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.48 (d)
As if CPU temperature is high, the
computer immediately shut down.

Q.49 (c)
Threads share address space of
Process. Virtually memory is
concerned with processes not with
Threads.

Q.50 (a)
Waiting time of P0 =5-1 = 4

 Waiting time of P1 =1-1=0
 Waiting time of P2 =13-2=11

 Average waiting time
4 0 11 15

5
3 3

 
  

Q.51 (c)

A process executes the code and
works as follows:
The number of child processes

created n2 1  32 1 
 = 8 – 1 = 7

Where, n=3∵ 3 fork () are
executing.

Q.52 (c)

Process Arrival
time

Time units
required

P1 0 5
P2 1 7
P3 3 4

FCFS:
 0 5 12 16

Order P1→ P2→ P3
Round robin here, not P2 because
in the ready queue P2 comes later
than P3.

 0 2 4 6 8 10 11 13 15 16
 Here, not P3 because in the ready
 queue comes first than P3.
 Order P1→ P3→ P2

Q.53 (b)
Acquire Lock (L)
Initial value of L = 0
{

While (Fetch_And_add (L,
1))
{

L = 1;
}

 }
Release Lock (L)
{
L = 0;
}
When P1 process executes Acquire
lock, after executing it, value of L=
1;
[∵ P1 Fails the while loop
condition because Fetch_And_Add
instruction return 0 and it sets the
value of L=1]
Now, there is a context switch and
still realase lock (L) produce hasn't
been executed.
Now, another process P2 executes
the acquire lock (L), it will execute
the while loop indefinite period of
time.
Now, suppose at this point i.e.,
While (Fetch_And_Add (L, 1))

{
 → L = 1;

}
Process P2 context switch occurs.
Now, control again comes to P1 it
will execute realease lock
procedure and the value of L
becomes 0.
Now, lock is free.
Now, after this suppose again
context switch occurs, controls
return to P2. P2 will again set the
value of L=l Now, P2 will again
executing the while loop indefinite
amount of time.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

At this instance lock is free; even
then P2 can't get it because value
of lock is not zero.
Any other-process will also blocks
now in the infinite while loop, even
the lock is free.
This implementation fails as L can
take on a non-zero value when the
lock is actually available.

Q.54 (b)

Three concurrent processes X, Y
and Z execute three different code
segments that access and update
certain shared variables.

 Processes
X Y Z
P(a) P(b) P(c)
P(b) P(c) P(d)
P(c) P(d) P(a)

(a) X : P(a) P(b) P(c)
 Y : P(b) P(c) P(d)
 Z : P(c) P (d) P (a)
 Suppose X first executes P(a) and

P(b) and then switches to process
Z. where P(c) and P(d) are
executed and wait for P(a). Then
again process switches to X and
then wait for P(c).

 ∴ Process X is waiting for C which
is occupied by Z and Z is waiting
for a is occupied by process X.

 So neither can execute and
deadlock occurs. (Not Acceptable)
(b) X : P(b) P(a) P(c)

 Y : P(b) P(c) p(d)
 Z: P (a) P(c) P (d)

X Y Z
P(b) P(b) P(a)
P(a) P(c) P(c)
P(c) P(d) P(d)

 Execution can be carried out in a
proper way without deadlock
occurrence and no wait for any

variable in the processer.
(Acceptable)
(c) X : P(b) P(a) P(c)

 Y : P(c) P(b) P(d)
 Z: P (a) P(c) P (d)

X Y Z
P(b) P(c) P(a)
P(a) P(b) P(c)
P(c) P(d) P(d)

 The sequence of variable P{b) and
P(c) are reverse and opposite [i.e.,
P(b) P(c) P(a) and P(a) P(b) P(c)]
So, deadlock may occurs in X and Y
respectively (Not Acceptable)
(d) X : P(a) P(b) P(c)

 Y : P(c) P(b) P(d)
 Z: P(c) P (d) P (a)

X Y Z
P(a) P(c) P(c)
P(b) P(b) P(d)
P(c) P(d) P(a)

 The sequence of variable P(c) and
P (a) are opposite in Z and X. So,
deadlock may occur (Not
Acceptable) Hence, the answer is
(b).

Q.55 (b)

The scheduling algorithm works as
round robin with quantum time
equals to T. After a process's turn
comes and it has executed for T
units, its waiting time becomes
least and its turn comes again after
every other process has got the
token for T units.

Q.56 (d)
Each of the processes W and X
reads x from memory and
increment x by 1. Each of the
processes Y and Z reads x from c.
Memory, and decrement by 2.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1. Start with X and perform P(S)
then S = 1 read X = 0 x = X + 1 =
1

2. Then Y will perform P(S) then S
= 0 read X - 0 x = x -2 = -2 then
store x. V(S), S =1

3. Then Z will perform P(S) then S
= 0, read x = -2x = x- 2 = -4 then
store X, V(S).S = 1.

4. Then x will store x. V(S), S=2,
X= 1

5. Then W will perform P(S), S =1,
read x = 1
x = x + 1 = 2, store x, V(S), S =2,
x = 2

Hence, answer is option (d).

Q.57 (c)

Options (a) suppose process X
executes Exit X then it will wait for
R, and then process Y executes
Entry Y then it will wait for S.
Since, initially both binary
semaphores are 0, no one will
increment it and both processes
will be stuck up in a deadlock.
Option (a) is incorrect.
Option (b) Here if process X
executes for n times repeatedly it
will set both semaphores to 1
(since only two values are
possible) and after that process y
executes. First time it passes the
Entry Y and makes both
semaphores to 0.
And on second time it finds both
semaphores to 0 and cannot pass
the Entry Y barrier. Hence it will
get stuck.
So, option b is wrong.
Option (c) Considering any
sequence of operation of process X
and process Y, first process X will
wait for S which is increment by
process Y and then . Process Y
waits for R which is incremented

by process X. There is no sequence
of operation in which the value of
R or S overlaps. Both processes
execute one after another.
So, option (c) is correct.
Option (d) suppose first process X
executes it sets R = 1 and then
waits for S. Now after that process
Y executes. It first sets S = 1 and.
decrement R = 0. It comes again
and. then again sets S = 1(/'.e., it
overlaps the value of S) and then
again wait for- R.. Clearly hence
one iteration of process X is lost
due to overlapping of value of S,
and after n -1 iteration process X
will be stuck.
So option (d) is wrong.

Q.58 (c)

(A)The producer will be able to
add an item to the buffer, but the
consumer can never consume if
given statement is false, because
once producer produces an item
and places in buffer, the next turn
to execute can be given to
consumer (). [The value of s = 1
and n=1]. So consumer will be
definitely able to consume it by
performing successful down
operations on s and n.
(B)The consumer will remove no
more than one item from the
buffer.

 Given statement is false as if p()
produces and adds to buffer, (c)
will consume the added item, this
sequence of alteration (p and c)
will always make consumer to
remove items from buffer.

 This statement would have been
true if it was said that the
consumer will remove no more
than one item from the buffer one
after the other. (at a time).

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

(C)Dead lock occurs if the
consumer succeeds in acquiring
semaphore‘s’ when the buffer is
empty. Given statement is true as
when buffer is empty initially if
consumer gets the turn to execute.
(D)Even if the starting value for
the semaphore ‘n’ becomes 1,
there will be invalid execution of
consumer on buffer empty
condition, which should not
happen. So statement is false.

Q.59 (d)
User threads are supported above
the kernel and a managed without
kernel support. The thread
function library to implement user
level threads usually runs on top of
the system in user mode. Thus
these threads with in a process are
invisible to the operating system.
Since the kernel is unaware of the
existence of such threads; when
one user level thread is blocked in
the kernel all other threads of its
process are blocked. So options (a)
and (b) are true (c) The OS is
aware of kernel level threads.
Kernel threads are scheduled by
the OS’s scheduling algorithms and
require a “lightweight” context
switch to switch between (that is,
registers, PC and SP must be
changed, but the memory context
remains the same among kernel
threads in the (same process).
User level threads are much faster
to switch between as there is not
context switch (d) False Kernel
level threads within the same
process share code section, data
section and other operating
system resources such as open
files and signals.

Q.60 (7.2)

P1 P2 P3

A B A C E D

 0 3 5 8 12 15 21
Average Turn Around time
=(8-0)+(5-3)+(12-5)+(21-7)+(15-
10)/5
= 36/5 = 7.2ms

Q.61 (1000) There are three processes

A, B and C that run in round robin
manner with time slice of 50 ms.
Processes start at 0, 5 & 10
miliseconds.
The processes are executed in
below order A, B, C, A
50 + 50 + 50 + 50 (200 ms passed)
Now A has completed 100 ms of
computations and goes for I/O
now
B, C, B, C, B, C
50+50+50+50+50+50(300ms
passed)
C goes for i/ o at 500ms and it
needs 500ms to finish the IO.
So C would complete its first IO at
1000 ms

Q.62 (5.5)

The Gantt chart for SRTF
scheduling algorithm is as follows:

P1 P2 P3 P4 P1
0 2 6 12 17
27
Average waiting time =
(15+0+3+4) / 4 = 22/4 = 5.5

Q.63 (b)
REQ1
Once P0 is allocated with (0, 0, 2),
the status of the system will be as
follows

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Allocation Max Need Available
X Y Z
0 0 3
3 2 0
2 1 1

X Y Z
8 4 3
6 2 0
3 3 3

X Y Z
8 4 0
3 0 0
1 2 2

X Y Z
3 2 0

With available (3, 2, 0) only P1 can
be served. Once P1 is executed,
available will be (6, 4, 0), with (6,
4, 0) we can’t serve either P0 or
P2. Hence there is no safe
sequence. Hence REQ1 can’t be
permitted.
REQ2
Once 1 P is allocated with (2, 0, 0),
the status of the system will be as
follows

Allocation Max Need Available
X Y Z
0 0 1
5 2 0
2 1 1

X Y Z
8 4 3
6 2 0
3 3 3

X Y Z
8 4 0
1 0 0
1 2 2

X Y Z
1 2 2

With available (1, 2, 2), we can
serve either P1 or P2.
If we serve P1 then the safe
sequence is P1, P2, P0. If we serve
P2 then the safe sequence is P2,
P1, P0. As true is at least one safe
sequence we can permit REQ2.

Q.64 (7)

If 6 resources are there then it may
be possible that all three process
have 2 resources and waiting for 1
more resource. Therefore, all of
them will have to wait indefinitely.
If 7 resources are there, then
atleast one must have 3 resources
so deadlock can never occur.

Q.65 (4)

It seems to be wrong question
in GATE exam. Below seems to be
the worst case situation. In below

situation P1 and P2 can continue
as they have 2 resources each
P1  2
P2  2
P3  1
P4  1

Q.66 (d)

If Ist is followed, then hold and
wait will never happen. II, III and
IV are similar. If any of these is
followed, cyclic wait will not be
possible.

Q.67 (12)
Periods of T1, T2 and T3 are 3ms,
7ms and 20ms
Since priority is inverse of period,
T1 is the highest priority task, then
T2 and finally T3
Every instance of T1 requires 1ms,
that of T2 requires 2ms and that of
T3 requires 4ms
Initially all T1, T2 and T3 are ready
to get processor, T1 is preferred
Second instances of T1, T2, and T3
shall arrive at 3, 7, and 20
respectively.
Third instance of T1, T2 and T3
shall arrive at 6, 14, and 49
respectively.
Time-Interval Tasks
0-1 T1
1-2 T2
2-3 T2
3-4 T1
[Second Instance of T1 arrives]
4-5 T3
5-6 T3
 6-7 T1
[Third Instance of T1 arrives]

[Therefore T3 is preempted]
 7-8 T2
[Second instance of T2 arrives]
 8-9 T2

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://gate.iitk.ac.in/GATE2015/AnsKey2015/CS_S06.pdf

 9-10 T1
[Fourth Instance of T1 arrives]
10-11 T3
11-12 T3
[First Instance of T3 completed]

Q.68 (d)

The size of ready queue doesn't
depend on number of processes. A
single processor system may have
a large number of processes
waiting in ready queue.

Q.69 (c)

Turnaround time is the total time
taken between the submission of a
program/process/thread/task
(Linux) for execution and the
return of the complete output to
the customer/user.
Turnaround Time = Completion
Time - Arrival Time.
FCFS = First Come First Serve (A,
B, C, D); Average Turnaround
time= 7.25
SJF = Non-preemptive Shortest Job
First (A, B, D, C); Average
Turnaround time= 6.75
SRT=Shortest Remaining Time
(A(3), B(1),C(4),D(2),B(5));
Average Turnaround time= 6.25
RR =
Round Robin with Quantum value 2
(A(2),B(2),A(1),C(2),B(2),D(2),C(2),
B(2)
Average Turnaround time= 8.25

Q.70 (a)
When both processes try to enter
critical section simultaneously,
both are allowed to do so since
both shared variables varP and
varQ are true. So, clearly there is
NO mutual exclusion. Also, deadlock
is prevented because mutual
exclusion is one of the four

conditions to be satisfied for
deadlock to happen. Hence,
answer is A.

Q.71 (a)

It satisfies the mutual exclusion,
since only one process can be in
the critical section at any time.

Q.72 (c)

The given Qution for two process
synchronization using “turn”
variable satisfies the only mutual
exclusion and bounded waiting but
progress is violated.
Consider that Process”0” executed
its critical section and made
turn=1 and Process”0” wants to
execute the critical section for the
2nd time,
Process”0” has to wait indefinitely
for Process”1” to start, which will
make turn=0.
Now we can say that Progress
condition is failed, since Critical
Section is free and Process “0”
wants to enter Critical Section and
it can enter only if Process “1”
turns up.

Q.73 (7)

S = -20 + 12 = -8
If initial value of S = 8 then 20 P(S)
operations will succeed.
As want to block at least one P(S)
operation by keeping “S” the
largest initial value.
If we keep initial value of S=7, then
19 P(S) operations will succeed
and only 20th P(S) operation will
get blocked.
The largest initial value of S for
which at least one P(S) operation
remains blocked is 7.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Turnaround_time
http://en.wikipedia.org/wiki/Round-robin_scheduling

Q.74 (a)
Facts about scheduling algorithms
is
1) FCFS can cause long waiting

times, especially when the first
job takes too much CPU time.

2) Both SJF and Shortest
Remaining time first
algorithms may cause
starvation. Consider a situation
when long process is there in
ready queue and shorter
processes keep coming.

3) If time quantum for Round
Robin scheduling is very large,
then it behaves same as FCFS
scheduling.

4) SJF is optimal in terms of
average waiting time for a
given set of processes. SJF gives
minimum average waiting
time, but problems with SJF is
how to know/predict time of
next job.

Q.75 (8.25)

Pre-emptive Shortest Remaining
time first scheduling, i.e. that
processes will be scheduled on the
CPU which will be having least
remaining burst time (required
time at the CPU).
The processes are scheduled and
executed as given in the below
Gantt chart.

P1 P2 P3 P2 P4 P1

0 3 7 8 10 13 20

Q.76 (d)
Generally every thread of a
process have their own PC and
stack. Both heap and global
variables are shared by every
thread of a process

Q.77 (3.0)
Using preemptive SRTF algorithm
Gantt chart will be,

Turnaround time Waiting time

1

2

3

4

P 12 0 12

P 6 3 3

P 17 5 12

P 8 6 2

  

  

  

  

1

2

3

4

P 12 7 5

P 3 3 0

P 12 5 7

P 2 2 0

  

  

  

  

Average Waiting Time
5 0 7 0

3.0
4

  
 

Q.78 (c)
 There are ‘x’ number of threads

and ‘y’ number of locks
Now, considering each option,

 If there is 1 threads and two locks
then there won’t be situation of
deadlock.

 Similarly if there is only 1 lock ,
there will be no deadlock
situation

 But when there are two processes
and two threads, deadlock
situation can occur because both
the process can acquire one lock
and may demand another lock
which arises deadlock.

Q.79 (b)

All the threads share address
space but other entities like, stack,
PC resisters are not shared and
every thread will have its own.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.80 (29)

P1 P4 P2 P4 P1 P3 P5

 0 2 5 33 40 43 51 67

 Average waiting time
145

29
5

 

Q.81 (b)
Pro
cess

Current
Allocatio

n

Max.
Requireme

nt

Remaining
need

Current
availabl

e
P1
P2
P3

3
1
3

7
6
5

4
5
2

9-7=2
5
8
9

Safe sequence ⇒ P3 →P1→P2
Safe and not deadlocked

Q.82 2
 P1 P2 P3
 | | |
 | No deadlock

Maximum each process can
request for 2 resources so, that
there will not be any deadlock,
because we have only 4 resource
available.
So, K value is ‘2’.

Q.83 (a)

 Safe sequence: P0, P2, P1, P3
 Safe state

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

2.1 WHAT IS MEMORY MANAGEMENT
AND WHY WE DO IT?

CPU is shared between processes.
CPU Utilization increases.
For the same reason, all process must be in
RAM. To handle all process in RAM, we do
memory management. Memory
management requires hardware support.
CPU reads instructions from memory
locations as guided by Program Counter.

2.1.1 Address Binding:
i. Hard Disk contains .exe files or

executable programs.
ii. These are moved to main memory

or RAM and becomes processes. A
process can be executed by CPU.

iii. Input Queue: Collection of
programs that are waiting on disk
to be brought in to memory for
execution forms the input queue.

Binding of instructions and data to
memory addresses in main memory for a
process can be done in any of the following
fashions:

i. Compile Time Address Binding:
Absolute Code
If it is known at compile time where
the process will reside in memory,
then absolute code can be
generated. For example, if it is
known a priori that a user process
resides starting at location R, then
the generated compiler code will
start at that location and extend up
from there. If at some later time, the
sterling location changes, then it
will be necessary to recompile this
code. The

MS-DOS. COM-format programs are
absolute code bound at compile
time.

ii. Load Time Address Binding :
Relocatable Code
If it is not known at compile time
where the process will reside in
memory, then the compiler must
generate re-locatable code. In this
case, final binding is delayed until
load time, if the starting addresses
changes; we need only to reload the
user code to incorporate this
changed value.

iii. Execution Time Address
Binding:
If the process can be moved during
its execution from one memory
segment to another, then binding
must be delayed until run time.
Special hardware must be available
for this scheme to work.

2.1.2 Logical Versus Physical Address
Space

An address generated by the CPU is
commonly referred to as a logical address,
whereas an address seen by the memory
unit (that is, the one loaded into the
memory address register of the memory)
is commonly referred to as a physical
address. The run-time mapping from
virtual to physical address is done by the
memory-management unit (MMU), which
is a hardware device. As shown in Fig. , this
scheme requires hardware support
slightly different from the hardware
configuration. The base register is now

2 MEMORY MANAGEMENT

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

called a relocation register. The value in
the relocation register is added to every
address generated by a user process at the
time it is sent to memory. For example, if
the base is at 14,000, then an attempt by
user to address location 0 is dynamically
relocated to location 14,000; an access to
location 346 is mapped to location 14,346.

Fig. Dynamic relocation using
relocation register.

We have two different types of addresses:
Logical addresses (in the range 0 to max)
and physical addresses (in the range (R +
0) to (R + max) for a base value R). The
user generates only logical addresses and
thinks that the process runs in locations 0
to max. The user program supplies logical
addresses; these logical addresses must be
mapped to physical addresses before they
are used.

2.1.3 Swapping

A process needs to be in the memory to be
executed. A process, however, can be
swapped temporarily out of memory to a
backing store, and then brought back into
memory for continued execution. For
example, assume a multiprogramming
environment with round-robin CPU-
scheduling algorithm. When a quantum
expires, the memory manager will start to
swap out the process that just finished,

and to swap in another process to the
memory space that has been freed.
Swapping requires a backing store. The
backing store is commonly a fast disk. It
must be large enough to accommodate
copies of all memory images for all users,
and must provide direct access to these
memory images.
The context-switch time in such a
swapping system is fairly high. To get an
idea of the context-switch time, assume
that the user process is of size 100 K and
the backing store is a standard hard disk
with a transfer rate of 1 megabyte per
second. The actual transfer of the 100 K
process to or from memory takes
100K/1000K per second = 1/10 second =
100 milliseconds.
Assuming that no head seeks are
necessary and an average latency of 8
milliseconds, the swap time takes 108
milliseconds. Since we must both swap out
and swap in, the total swap time is then
about 216 milliseconds. For efficient CPU
utilization, we want our execution time for
each process to be long relative to the swap
time. Thus, in a round-robin CPU-
scheduling algorithm, for example, the
time quantum should be substantially
larger than 0.216 seconds.
There are other constraints on swapping.
If we want to swap a process, we must be
sure that it is completely idle. Of particular
concern is any pending I/O. If a process is
waiting for an I/O operation, we may want
to swap that process to free up its memory.
However, if the I/O is asynchronously
accessing the user memory for I/O buffers,
then the process cannot be swapped.
Assume that the I/O operation was queued
because the device was busy. Then, if we
were to swap out process P1 and swap in
process P2, the I/O operation might then
attempt to use memory that now belongs
to process P2. The two main solutions to
this problem are

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

i) Never to swap process with pending
I/O.

ii) To execute I/O operations only into
operating-system buffers. Transfers
between operating system and process
memory then occur only when the
process is swapped in.

In compile time/load time binding, a

swapped out process will be swapped in

to the same memory space.

In execution time binding, different

memory space can be used because

physical addresses are computed during

execution time.

2.1.4 Contiguous Allocation

The main memory must accommodate
both the operating system and the various
user processes. The memory is usually
divided into two partitions.
One for the resident operating system and
one for the user processes. It is

Operating System
User

512K

2.2 SINGLE-PARTITION ALLOCATION

If the operating system is residing in lower
section of memory and the user processes
are executing in higher sections of
memory, it is required to protect the
operating-system code and data from
changes (accidental or malicious) by the
user processes. It is also required to
protect the user processes from one
another. This protection can be provided
by using a relocation register.
The operating system keeps a table
indicating which parts of memory are
available and which are occupied. Initially,

all memory is available for user processes,
and is considered as one large block of
available memory, a hole. When a process
arrives and needs memory, then search for
a hole large enough for this process. If we
find one, we allocate only as much memory
as is needed, keeping the rest available to
satisfy future requests.

2.2.1 Multiple-Partition Allocation

Since it is desirable, that there be several
user processes residing in memory at the
same time, we need to consider the
problem of how to allocate available
memory to the various processes that are
in the input queue waiting to be brought
into memory. One of the simplest schemes
for memory allocation is to divide memory
into a number of fixed-sized partitions.
For example assume that we have 2560K
of memory available and a resident
operating system of 400K. This situation
leaves 2160 K for user processes, as shown
in Figure below.
Given the input queue in the figure, and
FCFS job scheduling, we can immediately
allocate memory to processes P1, P2, and P3
creating the memory map of Figure (a). We
have a hole of size 260K that cannot be
used by any of the remaining processes in
the input queue. Using a round-robin CPU-
scheduling with a quantum of 1 time unit,
process P2,

Fig. Scheduling example

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

will terminate at time 14, releasing its
memory. This situation is shown Figure
(b). We then return to our job queue and
schedule the next process, process P4, to
produce the memory map of Figure (c).
Process P1 will terminate at time 28 to
produce Figure (d); process P5 is then
scheduled, producing Figure (e). This
example shows the general structure of
the allocation scheme

 (a) (b) (c) (d) (e)
fig. Memory allocation and long-term
scheduling

In general, throughout memory when a
process arrives and needs memory, we
search this set for a hole that is large
enough for this process. The set of holes is
searched to determine which hole is best
to allocate. First-fit and worst-fit are the
most common strategies used to select a
free hole from the set of available holes.
i. First-fit

Allocate the first hole that is big
enough. Searching can start either at
the beginning of the set of holes or
where the previous first-fit search
ended. We can stop searching as soon
as we find a free hole that is large
enough.

ii. Best-fit
Allocate the smallest hole that is big
enough. We must search the entire list,
unless the list is kept ordered by size.

This strategy produces the smallest
leftover hole.

iii. Worst – fit
Allocate the largest hole. Again, we
must search the entire list, unless it is
than the smaller leftover hole from a
best-fit approach.

2.3 EXTERNAL & INTERNAL
FRAGMENTATION

As processes are loaded and removed from
memory, the free memory space is broken
into little pieces. External fragmentation
exists when enough total memory space
exists to satisfy a request, but it is not
contiguous; storage is fragmented into a
large number of small holes. This
fragmentation problem can be severe. In
the worst cast we could have a block of free
(wasted) memory between every two
processes. If all this memory were in one
big free block, we might be able to run
several more processes. One solution to
the problem of external fragmentation is
compaction. The goal is to shuffle the
memory contents to place all free memory
together in one large block. Resolution is
done at assembly or load time, compaction
cannot be done; compaction is possible
only if relocation is dynamic, and is done at
execution time.

Swapping can also be combined with
compaction. A process can be rolled out of
main memory to a backing store and rolled
in again later. When the process is rolled
out, its memory is released, and perhaps is
reused for another process. If static
relocation is used, the process must be
rolled into the exact same memory
locations that it occupied previously. This
restriction may require that other
processes be rolled out to free that
memory.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

If dynamic relocation (such as with base
and limit registers) is used, then a process
can be rolled into a different location. In
this case, we find a free block, compacting
if necessary, and roll in the process.

2.3.1 Paging

Another possible solution to the external
fragmentation problem is to permit the
logical address space of a process to be
noncontiguous, thus allowing a process to
be allocated physical memory wherever
the latter is available. One way of
implementing is through the use of paging
scheme.

2.3.2 Basic Method

Physical memory is broken into fixed-sized
blocks called frames. Logical memory is
also broken into blocks of the same size
called pages. When a process is to be
executed, its pages are loaded into any
available memory frames from the backing
store. The backing store is divided into
fixed-sized block that are of the same size
as the memory frames.
The hardware support for paging is shown
in Figure 13.5. Every address generated by
the CPU is divided into two parts;
A page number (p) and a page offset (d).
The page number is used as an index into
a page table. The page table contains the
base address of each page in physical
memory. This base address is combined
with the page offset to define the physical
memory address that is sent to the
memory unit). If the size of logical address
space is 2m, and a page size is 2n addressing
units (bytes or words), then the high-order
m-n bits of a logical address designate the
page number, and the n low-order bits
designate the page offset. Thus, the logical
address is as follows:

Where p is an index into the page table
and d is the displacement within the page.
Consider the memory of Figure. Using a
page size of 4 bytes and a physical memory
of 32 byte (8 pages), we show an example of
how the user's view of memory can be
mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into
the page table, we find that page 0 is in
frame 5. Thus, logical address 0 maps to
physical address 20 (= (5 x 4) + 0).
Logical address 3 (page 0, offset 3) maps to
physical address 23 (= (5 x 4) + 3).
Logical address 4 is page 1, offset 0;
according to the page table, page 1 is
mapped to frame 6.
Thus, logical address 4 maps to physical
address 24 (= (6 x 4) + 0).
Logical address 13 maps to physical
address 9.
When we use a paging scheme, we have no
external fragmentation: Any free frame
can be allocated to a process that needs it.
However, we may have some internal
fragmentation.

Logical
Memory

Page table Physical
memory

0

1

2

3

a

b

c

d

 4

5

6

7

e

f
g

h

8

9

10

11

i
j
k

l
12 m

0 5
1 6
2 1
3 2

0
4 i

j
k
l

8 m
n
o
p

12
16

20 a
b

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

13

14

15

n

o

p

c
d

24 e
f
g
h

28
Fig. Paging example for a 32-byte
memory with 4-byte pages

Since the operating system is managing
physical memory, it must be aware of the
allocation details of physical memory:
Which frames are allocated, which frames
are available, how many total frames there
are and so on.
This information is generally kept in a data
structure called a frame table. The frame
table has one entry for each physical page
frame, indicating whether the latter is free
or allocated and, if is allocated, to which
page of which process or processes.

2.3.3 Protection

Memory protection in a paged
environment is accomplished by
protection bits that are associated with
each frame. Normally, these bits are kept in
the page table. One bit can define a page to
be read and write or read-only.
A valid-invalid bit. When this bit is set to
“valid”, this value indicates that the
associated page is in process’s logical
address space, and is thus a legal (valid)
page.

2.3.3.1 Multilevel Paging

Most modern computer system supports a
very large logical address space (232 to
264). In such an environment the page table
itself becomes excessively large.
For example, consider a system with a 32-
bit logical address space. If the page size in

such a system is 4K bytes (212), then a page
table may consist of up to 1 million entries
(232 / 212) Because each entry consists of 4
bytes, each process may need up to 4
megabytes of physical address space for
the page table alone. Clearly, we would not
want to allocate the page table
contiguously in main memory. One simple
solution to this is to divide that page table
into smaller pieces.

2.4 SEGMENATION

An important aspect of memory
management that became unavoidable
with paging is the separation of the user’s
view of memory and the actual physical
memory. Consider how you of a program
when you are writing it. You think of it as a
main program with a set of subroutines,
procedures, or modules. There may also be
various data structures: tables, arrays,
stacks, various, and so on. Each of these
modules or data elements is referred to by
name. You talk about “the symbol table,”
“function sqrt,” “the main program,”
without carrying what addresses in
memory these elements occupy. You are
not concerned with whether the symbol
table is stored before or after the Sqrt
function of the signet is of variable length;
is intrinsically defined by the purpose of
the segment in the program.

Segmentation is a memory-management
scheme that supports this user view or
memory. A logical address space is a
collection of segments. Each segment has a
name and a length. The address space is a
collection of segments. Each segment has a
name and a length. The addresses specify
both the segment name and the offset
within the segment. The user therefore
specifies each address by the offset the
segment.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

For simplicity of implementation,
segments are numbered and are referred
to by a segment number, rather than by a
segment name. Thus, a logical address
consists of a two tuple:< segment-
number, offset >.

Although the user can now refer to objects
in the program by a two-dimensional
address, the actual physical memory is
still, of course, a one-dimensional
sequence of bytes. Thus, we must define
an implementation to map two-
dimensional user-defined addresses into
one-dimensional physical addresses. This
mapping is affected by a segment table.
Each entry of the segment table has a
segment base and a segment limit. The
segment base contains the starting
physical address where the segment
resides in memory, whereas the segment
limit specifies the length of the segment.
Consider the situation shown in the
Figure below. We have five segments
numbered from 0 through 4. The
segments are stored in physical memory
as shown. The segment table has a
separate entry for each segment, giving
the beginning address of the segment in
physical memory (the base) and the
length of that segment (the limit). For
example, segment 2 is 400 bytes long, and
begins at location 4300. Thus, a reference
to byte 53 of segment 2 is mapped onto
location 4300+53=4353. A reference to
byte 1222 of segment 0 would result in a
trap to the operating system, as this
segment is only 1000 bytes long.

2.5. FRAGMENATION

The long-term scheduler must find all
allocate memory for all the segments of a
user program. This situation is similar to
paging expect that the segments are of
variable length; pages are all the same size.
Thus, as with the variable- sized partition
scheme, a memory allocation is a dynamic
storage- allocation problem, usually solved
with a best-fit or first-fit algorithm.
Segmentation may then cause external
fragmentation, when all blocks of free
memory are too small to accommodate a
segment. In this case, the process may
simply have to wait until more memory (or
at least a larger hole) becomes available, or
compaction may be used to create a large
hole. Because segmentation is by its nature
a dynamic relocation algorithm, we can
compact memory whenever we want.

2.6 VIRTUAL MEMORY

 The good of various memory-
management strategies that have used in
computer systems are: to keep many
processes in memory simultaneously to
allow multiprogramming. However, they

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

tend to require the entire process to be in
memory before the process can execute.
Virtual memory is a technique that allows
the execution of process that may not be
completely in memory. This technique
frees programmers from concern over
memory storage limitations.
An examination of real programs shows us
that, in many cases, the entire program is
not needed. For instance
i. Program often have code to handle

unusual error conditions. Since these
errors seldom, if ever occur in practice,
this code is almost never executed.

ii. Arrays, lists and table are often
allocated more memory than they
actually need. An array may be
declared 100 by 100 elements, even
though it is seldom larger than 10 by
10 elements. An assembler symbol
table may have room for 3000 symbols,
although the average program has less
than 200 symbols.

Even in those cases where the entire
program is needed, it may not all be
needed at the same time (the case with
overlays).
The ability to execute a program that is
only partially in memory would have many
benefits
i) A program would no longer be

constrained by the amount of physical
memory that is available. Users would
be able to write programs for an
extremely large virtual address space,
simplifying the programming task.

ii) Because each user program could take
less physical memory, more programs
could be run at the same time, with a
corresponding increase in CPU
utilization and throughput, but with no
increase in response time or
turnaround time.

iii) Less I / O would be needed to load or
swap user program into memory, so
each user program would run faster.

Virtual memory is the separation of user
logical memory from physical memory,
this separation allows an extremely large
virtual memory to be provided for
programmers when only a smaller
physical memory is available. With this
scheme, we need some form of hardware
support to distinguish between those
pages that are on the disk. The valid-
invalid bit scheme described can be used
for this purpose. This time, however, when
this bit it set to “valid”, this value indicates
that the associated page is both legal and in
memory. If the bit is set to "involved", this
value indicates that the page either is not
valid (that is, not in the logical address
space of the process), or is valid but is
currently on the disk.
Let p be the probability of a page fault (0 ≤
p ≤ 1). We would expect p to be close to
zero; that is, there will be only a few page
faults. Then

Effective access time = (1 - p) x ma + p x
page fault time. In any case, we are faced
with three major components of the page-
fault service time:
i) Service the page-fault interrupt.
ii) Read in the page.
iii) Restart the process.
If we take an average page-fault service
time 25 milliseconds and a memory access
time of 100 nanoseconds, then

Effective access time in nanoseconds
= (1-p) × (100) +p (25 milliseconds)
= (1 - p) ×100 + p×25,000,000
= 100 +24,999,900 × p.
Thus the effective access time is directly
proportional to the page-fault rate. In one
access out of 1000 causes a page fault, the
effective access.

2.7 PAGE REPLACEMENT

If we increase our degree of
multiprogramming, we are over-allocating
memory. Over-allocating will show up in

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

the following way. While a user process is
executing, a page fault occurs. The
hardware traps to the operating system,
which checks its internal tables to see that
this is a fault and not an illegal memory
access. The operating system determines
where the desired page is residing on the
disk, but then finds there are no free
frames on the free-frame list; all memory
is in user. The operating system has
several options at this point. It could
terminate the user process. We could
swap out a process, freeing all its
frames, and reducing the level of
multiprogramming.

Page Replacement

It page replacement takes the following
approach. If no frame is free,
i. Find the location of the desired page on

the disk.
ii. Find a free frame:

a) If there is a free frame, use it.
b) Otherwise, use a page-replacement

algorithm to select a victim frame.
c) Write the victim page to the disk;

change the page and frame tables
accordingly.

3. Read the desired page into the (newly)
free frame; change the page and frame
tables.

4. Restart the user process.
We must solve two major problems to
implement demand paging:

We must, develop a frame-allocation
algorithm and a page-replacement
algorithm.
Virtually memory is commonly
implemented by demand paging. It can
also be implemented in a segmentation
system. Several systems provide a paged
segmentation scheme, where segment are
broken into pages.

2.8 DEMAND PAGING

A demand–paging system is similar to a
paging system with swapping. Processes
reside on secondary memory (which is
usually a disk) When we want to execute a
process, we swap it into memory.
The hardware to support demand paging
is the same as the hardware for paging and
swapping.
 Page table

This table has the ability to mark an
entry invalid through a valid-invalid bit
or special value of protection bits.

 Secondary memory
This memory holds those pages that
are not present in main memory. The
secondary memory is usually a high-
speed disk. It is known as swap space
or backing store device, and the section
of disk used for this purpose is known
as swap space or backing store.

2.8.1 Performance of Demand Paging

Demand paging can have a significant
effect on the performance of a computer
system; let us compute the effective access
time for a demand-paged memory.

2.9 PAGE-REPLACEMENT

ALGORITHM

We evaluate an algorithm by running it on
a particular string of memory reference
and computing the number of page faults.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The string of memory references is called
a reference string. To illustrate the page-
replacement algorithms, we shall use the
reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3,
2, 1, 2, 0, 1, 7, 0 1for a memory with three
frames.

2.9.1 FIFO Algorithm

The simplest page-replacement algorithm
is a FIFO algorithm. A FIFO replacement
algorithm associates with each page the
time when that page is chosen. It is not
necessary to record the time when a page
is brought in. We can create a FIFO queue
to hold all pages in memory. We replace the
page at the head of the queue. When a
page is brought into memory, we insert it
at the tail of the queue. Reference string

Fig. FIFO page-replacement algorithm.

There are 15 faults altogether. Belady's
anomaly reflects the fact that, for some
page-replacement algorithms, the page-
fault rate may increase as the number of
allocated frames increases.

2.9.2 Optimal Algorithm

Belady's anomaly shows the search for an
optimal page-replacement algorithm. An
optimal page-replacement algorithm has
the lowest page-fault rate of all
algorithms. An optimal algorithm will
never suffer from Belady's anomaly. An
optimal page-replacement algorithm
exists, and has been called OPT or MIN. It
is simply replace the page that will not be
used for the longest period of time.
Unfortunately, the optimal page-
replacement algorithm is difficult to

implement, because it requires future
knowledge of the reference string.
Reference string page frames

Fig. Optimal page-replacement

algorithm

 2.9.3 LRU Algorithm

We can replace the page that has not been
used for the longest period of time. This
approach is the least recently used (LRU)
algorithm. LRU replacement associates
with each page the time of that page's last
use. When a page must be replaced, LRU
chooses that page that has not been used
for the longest period of time. This
strategy is the optimal page-replacement
algorithm looking backward in time,
rather than forward. The result of
applying LRU replacement to out example
reference string is shown in Fig. below
The LRU policy is often used as a page-
replacement algorithm and is considered
to be quite good. The major problem is
how to implement LRU replacement. An
LRU page-replacement algorithm may
require substantial hardware assistance.
The problem is to determine an order for
the frames defined by the time of last use.
Two implementations are feasible:

2.9.4 Counters

In the simplest case, we associate with
each page-table entry a time –of –use field,
and add to the CPU a logical clock or

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

counter. The clock is incremented for every
memory reference. Whenever a reference
to a page is made, the contents of the clock
resister are copied to the time-of use field
in the page table for that page. In this way,
we always have the “time” of the last
reference to each page. We replace the
page with the smallest time, This scheme
require a search of the page table to find
the LRU page, and a write to memory (to
the –to –use field in the page table) for
each memory access. The times must also
be maintained when page tables are
changed (due to CPU scheduling).
Overflow of the clock must be considered.

2.9.5 Stack

Another approach to implementing LRU
replacement is to keep a stack of page
numbers. Whenever a page is referenced,
it is removed from the stack and put on the
top. In this way, the top of the stack is
always the most recently used page and
the bottom is the LRU. Because entries
must be removed from the middle of the
stack, it is best implemented a doubly
linked list, with a head and tail pointer.
Reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

2.10 COUNTING ALGORITHMS

There are many other algorithm that can
be used for page replacement. For
example, we could keep a counter of the
number of references that have been made
to each page, and develop the following
two schemes.

2.10.1 LFU Algorithm:
 The least frequently used (LFU) page-
replacement algorithm requires that the
page with the smallest count be replaced.
The reason for this selection is that an
activity used page should have a large
reference count. This algorithm suffers
from the situation in which a page is used
heavily during the initial phase of a
process, but then is never used again.

2.10.2 MFU Algorithm:

The most frequently used (MFU) page-
replacement algorithm is based on the
argument that the page with the smallest
count was probably just brought in and has
yet to be used.

2.10.3 Page Buffering Algorithm

Systems commonly keep a pool of free
frames. When a page fault occurs, a victim
frame is chosen as before. However, that
desired page is read into a free frame from
the pool before the victim is written out.
This procedure allows the process to
restart as soon as possible, without
waiting for the victim page to be written
out.

2.11 ALLOCATION OF FRAMES

The simplest case of virtual memory is the
single-user system. Consider a single-user
system with 128K memory composed of
pages of size 1K Thus, there are 128
frames. The operating system may take
35K, leaving 93 frames for the user
process. Under pure demand paging, all 93
page faults would all get free frames from
the free-frame list. When a user the free-
frame list was exhausted, a page-
replacement algorithm would be used to
select one of the 93 in-memory pages to be
replaced with the ninety-fourth, and so

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

on. When the process terminated, the 93
frames would once again be placed on the
free-frame list.

2.11.1 Minimum Number of Frames

There are, various constraints on our
strategies for the allocations of frames, like
i) We cannot allocate more than the total

number of available frames (unless
there is page sharing).

ii) There are a minimum number of
frames that can be allocated. Obviously,
as the number of frames allocated to
each process decreases, the page fault-
rate increases, slowing process
execution. The minimum number of
frames per process is defined by the
architecture, whereas the maximum
number is defined by the amount of
available physical memory.

2.12 THRASHING

If the number of frames allocated to a low-
priority falls below the minimum number
require by the computer architecture, we
must suspend that process’ execution. If
the process does not have this number of
frames, it will very quickly page fault. At
this point, it must replace some page.
However, since all its pages are in active
use, it must replace a page that will be
needed again right away. Consequently, it
quickly faults again, and again. The process
continues to fault, replacing pages for
which it will then and bring back away.
This high paging activity is called
thrashing. A process is thrashing if it is
spending more time paging than
executing.

If the initial degree of multiprogramming
is increased, the CPU utilization of the
system will be very high, but if we still
increase the degree of multiprogramming,
after some point ‘ ’ the CPU utilization will
degrade.
Cause:

1. High degree of multiprogramming.
2. Lack of frames (Main memory).

Example:
Consider a system with CPU utilization as
10% and the paging disk 90%, then which
of the following will improve CPU
utilization.

1. Install bigger disk : NO
2. Install faster CPU : NO
3. Increase degree of

multiprogramming : NO
4. Decrease degree of

multiprogramming : YES
5. Install more main memory : YES
6. Increase Page Size : YES
7. Decrease Page Size : YES

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Consider a machine with 64 MB
physical memory and a 32-bit
virtual address space. If the page
size is 4 Kbyte, what is the
approximate size of the page table?
a) 16 Mbyte b) 8 Mbyte
c) 2 Mbyte d) 24 Mbyte

 [GATE-2001]

Q.2 Which of the following statements
is false?
a) Virtual memory implements

the translation of a program's
address space into physical
memory address space

b) Virtual memory allows each
program to exceed the size of
the primary memory

c) Virtual memory increases the
degree of multi-programming

d) Virtual memory reduces the
context switching overhead

 [GATE-2001]

Q.3 Consider a virtual memory system
with FIFO page replacement
policy: For an arbitrary page
access pattern, increasing the
number of page frames in main
memory will
a) always decrease the number of

page faults
b) always increase the number of

page faults
c) sometimes increase the

number of page faults
d) never affect the number of

page faults
 [GATE-2001]

Q.4 In a system with 32 bit virtual
addresses and 1 Kbyte page size,

use of one-level page tables for
virtual to physical address
translation is not-practical because
of
a) the large amount of internal

fragmentation
b) the large amount of external

fragmentation
c) the large memory overhead in

maintaining page tables
d) the large computation

overhead in the translation
process

 [GATE-2003]

Common Data for Questions 5 and 6

A processor uses 2-level page tables for
virtual to physical address translation.
Page tables for both levels are stored in
the main memory. Virtual and physical
addresses are both 32 bits wide. The
memory is byte addressable. For virtual
to physical address translation, the 10
most significant bits of the virtual address
are used as index into the first level page
table while the next 10 bits are used as
index into the second level page table.
The 12 least significant bits of the virtual
address are used as offset within the
page. Assume that the page table entries
in both levels of page tables are 4 bytes
wide. Further, the processor has a
Translation Look-aside Buffer (TLB), with
a hit rate of 96%. The TLB caches recently
used virtual page numbers and the
corresponding physical page numbers.
The processor also has a physically
addressed cache with a hit rate of 90%.
Main memory access time is 10 ns, cache
access time is 1 ns, and TLB access time is
also 1 ns.

GATE QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.5 Assuming that no page faults
occur, the average time taken to
access a virtual address is
approximately (to the nearest 0.5
ns).

 a) 1.5 ns b) 2 ns
c) 3 ns d) 4 ns

 [GATE-2003]

Q.6 Suppose a process has only the
following pages in its virtual
address space: two contiguous
code pages starting at virtual
address Ox00000000, two
contiguous data pages starting at
virtual address 0x00400000, and a
stack page starting at virtual
address 0xFFFFF000. The amount
of memory required for storing the
page tables of this process is
a) 8 Kbyte b) 12 Kbyte

 c) 16 Kbyte d) 20 Kbyte
 [GATE-2003]

Q.7 The minimum number of page
frames that must be allocated to a
running process in a virtual
memory environment is
determined by

 a) the instruction set architecture
b) page size

 c) physical memory sire
d) number of processes in memory

 [GATE-2004]

Q.8 Consider a system with a two-level

paging scheme in which a regular
memory access takes 150 ns and
servicing a page fault takes 8 ms.
An average instruction takes 100
ns of CPU time, and two memory
accesses. The TLB hit ratio is 90%,
and the page fault rate is one in
every 10,000 instructions. What is
the effective average instruction
execution time?

a) 645 ns b) 1050 ns
 c) 1215 ns d) 1230 ns

 [GATE-2004]

Q.9 A CPU generates 32-bit virtual
addresses. The page size is 4
Kbyte. The processor has a
transition look-aside buffer (TLB)
which can hold a total of 128 page
table entries and is 4-way set
associative. The minimum size of
the TLB tag is

 a) 11 bit b) 13 bit
 c) 15 bit d) 20 bit

 [GATE-2006]

Q.10 A computer system supports 32-

bit virtual addresses as well as 32-
bit physical addresses. Since, the
virtual address space is of the
same size as the physical address
space, the operating system
designers decide to get rid of the
virtual memory entirely. Which
one of the following is true?
a) Efficient implementation of

multi-user support is no longer
possible

b) The processor cache
organization can be made more
efficient now

c) Hardware support for memory
management is no longer
needed

d) CPU scheduling can be made
more efficient now

 [GATE-2006]

Q.11 virtual memory system uses First
In First Out (FIFO) page
replacement policy and allocates a
fixed number of frames to a
process. Consider the following
statements:
P :Increasing the number of page

frames allocated to a process

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

sometimes increases the page
fault rate.

Q :Some programs do not exhibit
locality of reference.

Which one of the following is true?
a) Both P and Q are true, and Q is

the reason for P
b) Both P and Q are true, but Q is

not the reason for P
c) P is false But Q is true
d) Both P and Q are false

 [GATE-2007]

Statements for Linked Answer
Questions 12 to 13
A process has been allocated 3 page
frames. Assume that none of the pages of
the process are available in the memory
initially. The process makes the following
sequence of page references (reference
string) 1, 2, 1, 3, 7, 4, 5, 6, 3, 1
Q.12 If optimal page replacement policy

is used, how many page faults
occur for the above reference
string?
a) 7 b) 8

 c) 9 d) 10
 [GATE-2007]

Q.13 Least Recently Used (LRU) page

replacement policy is a practical
approximation to optimal page
replacement. For the above
reference string, how many more
page faults occur with LRU than
with the optimal page replacement
policy?
a) Zero b) 1
c) 2 d) 3

 [GATE-2007]

Q.14 A processor uses 36 bit physical

addresses and 32 bit virtual
addresses, with a page frame size
of 4 Kbyte. Each page table entry is
of size 4 byte. A three level page

table is used for virtual to physical
address translation, where the
virtual address is used as follows
Bit 30-31 are used to index into
the first level page table
Bit 21-29 are used to index into
the second level page table
Bit 12-20 are used to index into the
third level page table, and
Bit 0-11 are used as offset within
the page
The number of bits required for
addressing the next level page table
(or page frame) in the page table
entry of the first, second and third
level page tables are respectively

 a) 20, 20 and 20
b)24,24 and 24

 c) 24, 24 and 20
 d)25,25 and 24

 [GATE-2008]

Q.15 In which one of the following page

replacement policies, Belady's
anomaly may occur?

 a) FIFO b) Optimal
 c) LRU d) MRU

 [GATE-2009]

Q.16 The essential content(s) in each
entry of a page table is/are
a) virtual page number
b) page frame number
c) Both virtual page number and

page frame number
d) access right information

 [GATE-2009]

Q.17 A multilevel page table is
preferred in comparison to a single
level page table for translating
virtual address to physical address
because
a) it reduces the memory access

time to read or write a memory
location

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

b) it helps to reduce the size of
page table needed to
implement the virtual address
space of a process

c) it is required by the translation
look-aside buffer

d) it helps to reduce the number
of page faults in page
replacement algorithms.

 [GATE-2009]

Q.18 A system uses FIFO policy for page
replacement. It has 4 page frames
with no pages loaded to begin
with. The system first accesses 100
distinct pages in some order and
then accesses the same 100 pages
but now in the reverse order. How
many page faults will occur?

 a) 196 b) 192
 c) 197 d) 195

 [GATE-2010]

Q.19 Consider the virtual page

reference string: 1, 2, 3, 2, 4, 1, 3, 2,
4, 1
On a demand paged virtual
memory system running on a
computer system that has main
memory size of 3 page frames
which are initially empty. Let LRU
FIFO and PTIMAL denote the
number of page faults under the
corresponding page replacement
policy. Then,
a) OPTIMAL < LRU < FIFO
b) OPTIMAL < FIFO < LRU
c) OPTIMAL = LRU
d) OPTIMAL = FIFO
 [GATE-2012]

Statements for Linked Answer
Questions Q.20 & Q.21:
A computer uses 46-bit virtual address,
32-bit physical address ree-level paged
table organization, the page table base

register stores the base address of 1st
level page table (T1), which occupies
exactly one page, each entry of T1 stores
the base address of a page of the second-
level page table T2, each entry of T2
stores the base address of a page of third
level page level (T3), each entry of T3
stores a page tableentry (PTE) the PTE is
32 bit in size. The process or used in the
computer has a 1 MB 16-way set
associative virtually indexed tagged
cache. Cache block size is 64 bytes.

Q.20 What is the size of a page in KB in

this computer?
a) 2 b) 4

 c) 8 d) 16
 [GATE-2013]

Q.21 What is the minimum number of

page colors needed to guarantee
that no two synonyms map to
different sets in the processor
cache of this computer?
a) 2 b) 4

 c) 8 d) 16
 [GATE-2013]

Q.22 Assume that there are 3 page

frames which are initially empty. If
the page reference string is 1, 2, 3,
4, 2, 1, 5, 3, 2, 4, 6 the number of
page faults using the optimal page
replacement policy is ___.

[GATE–2014]

Q.23 A computer has twenty physical

page frames which contain
numbered 101 through 120. Now a
program accesses the pages
numbered 1, 2, ..… 100 in that
order, and repeats the sequence
THRICE. Which one of the
following page replacement
policies experience the same
number of page faults as the

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

optimal page replacement policy
for this program?
a) Least-recently-used
b) First-in-First-out
c) Last-in-First-out
d) Most-recently-used

[GATE–2014]

Q.24 A system uses 3 page frames for

storing process pages in main
memory. It uses the Least Recently
Used [LRU] page replacement
policy. Assume that all the page
frames are initially empty. What is
the total number of page faults
______________that will occur which
processing the page reference
string given below? 4, 7, 6, 1, 7, 6,
1, 2, 7, 2
 [GATE–2014]

Q.25 Consider a paging hardware with a

TLB. Assume that the entire page
table and all the pages are in the
physical memory. It takes 10
milliseconds to search the TLB and
80 milliseconds to access the
physical memory. If the TLB hit
ratio is 0.6, the effective memory
access time (in milliseconds) is
_______.

 [GATE–2014]

Q.26 Consider a system with byte-

addressable memory, 32 bit logical
addresses, 4 kilobyte page size and
page table entries of 4 bytes each.
The size of the page table in the
system in megabytes is ___________.

[GATE–2015]

Q.27 Consider a main memory with five

page frames and the following
sequence of page references: 3, 8,
2, 3, 9, 1, 6, 3, 8, 9, 3, 6, 2, 1, 3.
Which one of the following is true

with respect to page replacement
policies First-In-First Out (FIFO)
and Least Recently Used (LRU)?
a) Both incur the same number of

page faults
b) FIFO incurs 2 more page faults

than LRU
c) LRU incurs 2 more page faults

than FIFO
d) FIFO incurs 1 more page faults

than LRU
 [GATE–2015]

Q.28 A computer system implements a
40-bit virtual address, page size of
8 kilobytes, and a 128- entry
translation look-aside buffer (TLB)
organized into 32 sets each having
four ways. Assume that the TLB
tag does not store any process id.
The minimum length of the TLB
tag in bits is _________.

 [GATE–2015]

Q.29 Consider six memory partitions of

sizes 200 KB, 400 KB, 600 KB, 500
KB, 300 KB and 250 KB, where KB
refers to kilobyte. These partitions
need to be allotted to four
processes of sizes 357 KB, 210KB,
468 KB and 491 KB in that order. If
the best fit algorithm is used,
which partitions are NOT allotted
to any process?
a) 200KB and 300 KB
b)200KB and 250 KB
c)250KB and 300 KB
d)300KB and 400 KB

[GATE–2015]

Q.30 Consider a computer system with
40-bit virtual addressing and page
size of sixteen kilobytes. If the
computer system has a one-level
page table per process and each
page table entry requires 48 bits,

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

then the size of the per-process
page table is _____ megabytes.

 [GATE–2016]

Q.31 Consider a computer system with
ten physical page frames. The
system is provided with an access
sequence (a1, a2,…, a20, a1, a2,…
a20), where each ai is a distinct
virtual page number. The
difference in the number of page
faults between the last-in-first-out
page replacement policy and the
optimal page replacement policy is
______.

[GATE–2016]

Q.32 In which one of the following page
replacement algorithms it is
possible for the page fault rate to
increase even when the number of
allocated frames increases?
a) LRU (Least Recently Used)
b)OPT (Optimal Page
Replacement)
c) MRU (Most Recently Used)
d) FIFO (First In First Out)

[GATE–2016]

Q.33 Consider a machine with a byte
addressable main memory of 232
bytes divided into blocks of size 32
bytes. Assume that a direct
mapped cache having 512 cache
lines is used with this machine.
The size of the tag filed in bits is
___.

[GATE–2017]

Q.34 Consider a 2-way set associative
cache with 256 blocks and uses
LRU replacement, initially the
cache is empty. Conflict misses are
those misses which occur due to
contention of multiple blocks for
the same cache set. Compulsory
misses occur due to first time
access to the block. The following
sequence of accesses to memory
blocks (0,128,256,128,0,128,256,
128,1,129,257,129,1,129,257,129)
is repeated 10 times . The number
of conflict misses experienced by
the cache is ___.

 [GATE–2017]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) (d) (c) (c) (d) (c) (a) (d) (c) (c) (b) (a) (c) (d) (a)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b) (b) (a) (b) (c) (c) 7 (d) 6 122 4 (a) 22 (a) 384

31 32 33 34

1 (d) 18 78

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 (c)
Size of page table =
(total number of page table
entries) *(size of a page table
entry)
= (2^20 *2) = 2MB

Q.2 (d)
In a system with virtual memory
context switch includes extra
overhead in switching of address
spaces.

Q.3 (c)
Increasing the number of page
faults in main memory in case of
FIFO page replacement policy will
cause Belady's anomaly to occur
thus, the number of page faults is
increased though in general
increase in number of page frames.
Decreases the number of page
faults.

Q.4 (c)
We are given with the page size of
1 Kbyte.
We know that
Kbyte = 2 ^ 10 byte; Virtual
address is 32 bit long
So, required number of Pages
= 2^21/2 ^ 10 = 2 ^ 22
The required number of pages is
very large hence, it is not practical
to implement. The reason behind
is that we 11 face an issue of large
memory overhead in the
maintenance of, the page table.

Q.5 (d)
From the given,

Average time =
[(0.96)(1+0.9+0.1×11)] + [(0.04)
(21+ 0.9 + 0.1 × 11)] = 3.87 ns
This is nearest to 4 ns.

Q.6 (c)
Taking the values from the given,
Amount of memory required
= 4 × 212 byte
= 4 × 22 × 210
= 16 × 210 byte
= 16 kbyte

Q.7 (a)
By instruction set architecture,
minimum numbers of page frames
that must be allocated are
determined. Page frames are
created in the virtual memory to
minimize the system load and to
improve its performance when the
processes are in memory.

Q.8 (d)
Let the probability of page fault
rate

F = 41
10

2


Total memory access time
=0.90 * 150 +0.10 x 300 =165ns
Instruction execution time
= 100 + 2[165 + ½ ×104× 8 × 106]
=100 + 2 × 565 =1230ns

Q.9 (c)

Size of a page = 4KB = 2^12
Total number of bits needed to
address a page frame = 32 – 12 =
20
If there are ‘n’ cache lines in a set,
the cache placement is called n-

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

way set associative. Since TLB is 4
way set associative and can hold
total 128 (2^7) page table entries,
number of sets in cache =2^7/=
2^5. So 5 bits are needed to
address a set, and 15(20–5) bits
are needed for tag.

Q.10 (c)
For supporting virtual memory,
special hardware support is
needed from Memory
Management Unit. Since operating
system designers decide to get rid
of the virtual memory entirely,
hardware support for memory
management is no longer needed.

Q.11 (b)

As we know that in case of
Belady's anomaly, the increase in
number of pages results in increase of
page fault rate so both P and Q are
true but Q is not the reason for P.

Q.12 (a)

Optimal page replacement policy
replaces the page which will not be
used for longest time.

 Total number of page faults = 7

Q.13 (c)

LRU replaces the page which is
used least recently.

 Page frames
 Total number of page faults = 9

 Therefore, an increase of 2 is there
(97) in LRU than in optimal.

Q.14 (d)

Virtual address size = 32 bits
Physical address size = 36 bits
Physical memory size = 2^36 bytes
Page frame size=4K bytes=2^12
bytes
No. of bits required to access
physical memory frame =36-12=
24
So in third level of page table, 24
bits are required to access an
entry.9 bits of virtual address are
used to access second level page
table entry and size of pages in
second level is 4 bytes. So size of
second level page table is (2^9)*4
= 2^11 bytes. It means there are
(2^36)/(2^11) possible locations
to store this page table. Therefore
the second page table requires 25
bits to address it. Similarly, the
third page table needs 25 bits to
address it.

Q.15 (a)

In Belady's anomaly, if number of
frames are increased the number
of page faults increases. This
behaviour found only with FIFO.
The First In, First out (FIFO) page
replacement algorithm is a low-
overhead algorithm. In FIFO, the
operating system keeps track of all
the pages in memory in a queue.
The queue is managed in a way
that the most recent arrival is
placed at the back, and the earliest
arrival in front. T the time of page

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Memory_management_unit

replacement, oldest page is
selected to get replaced. Practical
implementation of FIFO is not very
good as the algorithm experiences
Belady's anomaly. In FIFO when
the number of frames increases
then, the number of page faults
also increases and this behaviour
is found by Belady's anomaly.
Thus, FIFO have this Belady's
anomaly, e.g., in FIFO for . three
frames the reference string 1,2, 3,
4, 1,2, 5, 1,2, 3,4, 5 There are 9
page faults and for four frames for
the reference string there will be
10 faults.

Q.16 (b)
A page table is the data structure
used to store the mapping
between virtual addresses and
physical addresses. A page table is
used by a Virtual memory system
in a computer operating system.
Virtual addresses are the
addresses which are unique to the
accessing process while physical
addresses are the addresses that
are unique to the CPU, i.e., RAM.
Page frame number is essential
content in each of the page table.
Virtual page number may not be
store entirely in the page table and
thus, cannot be considered as the
essential content.

Q.17 (b)
As we know that the, use of multilevel

page table reduces the size of the
page table needed to implement the
virtual address space of a process.

Q.18 (a)
Let’s understand the concept of FIFO

page replacement algorithm. The

First In, First out (FIFO) page
replacement algorithm is a low-
overhead algorithm. In FIFO, the
operating system keeps track of all
the pages in memory in a queue. The
queue is managed in a way that the
most recent arrival is placed at the
back, and the earliest arrival in front.
T the time of page replacement, oldest
page is selected to get replaced.
Practical implementation of FIFO is
not very good as the algorithm
experiences Belady's anomaly. Given
are 4 page frames. The 100 pages are
accessed in some order→ 1 to pages
will get 100 faults. Now, after the
pages are accessed, they are to be
accessed in reverse order. But in
reverse, there won't be any fault for
page numbers 100, 99, 98, 97.
Therefore, all page frames are
occupied. Now, for remaining 96
accesses, 96 faults would occur.

Total 100 (Direct access)+ 96
(Reverse access) = 196
Alternate method
Fault for n pages = 2n -4

So, for 100 pages = 2 × 100
– 4 =196

Q.19 (b)
Reference string:
1, 2, 3, 2, 4, 1, 3, 2, 4, 1
3 page frames.
FIFO
There are 6 page faults.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Optimal

There are 5 page faults.
LRU

There are 9 page faults.
Hence, optimal < FIFO < LRU

Q.20 (c)
Let the page size 2x byte
Then the page off set = x bites.

46,x x
As mentioned, first level page table
is contained in one page, each page
table entry is 32-bit.
The size of T3 is =246 X 22/2x =
246+2-x [∴PTE -32 bit, 3 B = 22B]
The size of T2 is = 246+2-x X 22/ 2x
= 246+4-x
The size of T1 is = 246+4-x X 22/ 22
= 246+6-3x

∴ 46 = 6 -3x –x ⟹ x= 13 [T1
exactly occupies of page]
That means, page size is of 13 bit
or pae size = 213 bytes = 8KB.

Q.21 (c)

As the page size is 213 bytes, we
divide cache size by page a size
and group 16 pages in one set
No. of pages in cache = 1MB/8KB =
128 pages
No. of sets in cache =128/16 = 8
sets
So minimum use need 8 colors for
mapping.

Q.22 (7)
Given three page frames.
Reference string is 1, 2, 3, 4, 2, 1, 5,
3, 2, 4, 6 Initially, there are three
page faults and entries are 1 2 3
Page 4 causes a page fault and
replaces 3 (3 is the longest distant
in future), entries become 1 2 4
Total page faults = 3+1 = 4
Pages 2 and 1 don't cause any
fault.
5 causes a page fault and replaces
1, entries become 5 2 4
Total page faults = 4 + 1 = 5
3 causes a page fault and replaces
1, entries become 3 2 4
Total page faults = 5 + 1 = 6
3, 2 and 4 don't cause any page
fault.
6 causes a page fault.
Total page faults = 6 + 1 = 7

Q.23 (d)
The optimal page replacement
algorithm swaps out the page
whose next use will occur farthest
in the future. In the given question,
the computer has 20 page frames
and initially page frames are filled
with pages numbered from 101 to
120.
Then program accesses the pages
numbered 1, 2, …, 100 in that
order, and repeats the access
sequence THRICE. The first 20
accesses to pages from 1 to 20

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm

would definitely cause page fault.
When 21st is accessed, there is
another page fault. The page
swapped out would be 20 because
20 is going to be accessed farthest
in future. When 22nd is accessed,
21st is going to go out as it is going
to be the farthest in future. The
above optimal page replacement
algorithm actually works as most
recently used in this case. As a side
note, the first 100 would cause 100
page faults, next 100 would cause
81 page faults (1 to 19 would
never be removed), the last 100
would also cause 81 page faults.

Q.24 (6)
Page reference string is
4, 7, 6, 1, 7, 6, 1, 2, 7, 2

Implementing LRU using 3 page
frames
Total page faults =6

Q.25 (122)
As both page table and page are in
physical memory
T(eff) = hit ratio * (TLB access time
+ Main memory access time) + (1 -
hit ratio) * (TLB access time + 2 *
main memory time)
= 0.6*(10+80) + (1-0.6)*(10+2*80)
= 0.6 * (90) + 0.4 * (170) = 122

Q.26 (4)
Number of entries in page table =
232/ 4KB = 232/ 212 = 220
Size of page table = (Number of
page table entries) * (Size of an
entry)
= 220 * 4 = 222 = 4 MB

Q.27 (a)
3, 8, 2, 3, 9, 1, 6, 3, 8, 9, 3, 6, 2, 1, 3
In both FIFO and LRU, we get
following after considering 3, 8, 2,
3, 9, 1, 3 8 2 9 1
FIFO
6 replaces 3
8 2 9 1 6
3 replaces 8
2 9 1 6 3
8 replaces 2
9 1 6 3 8
2 replaces 9
1 6 3 8 2
No more page faults
LRU
6 replaces 8
3 2 9 1 6
 8 replaces 2
3 9 1 6 8
2 replaces 1
3 9 6 8 2
1 replaces 8
3 9 6 2 1

Q.28 (22)

Total virtual address size = 40
Since there are 32 sets, set offset =
5
Since page size is 8kilobytes, word
offset = 13
Minimum tag size = 40 - 5- 13 = 22

Q.29 (a)

Best fit allocates the smallest block
among those that are large enough
for the new process. So the
memory blocks are allocated in
below order.
357  400
210  250
468  500
491  600
So the remaining blocks are of 200
KB and 300 KB

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.30 (384)
Size of memory = 240

Page size = 16KB = 214

No of pages= size of Memory/ page
size = 240 / 214 = 226

Size of page table = 226 * 48/8
bytes
 = 26*6 MB =384 MB

Q.31 (1)
LIFO:
a1 to a10 will result in page faults,
So 10 page faults from a1 to a10.
Then a11 will replace a10(last in is
a10), a12 will replace a11 and so
on till a20, so 10 page faults from
a11 to a20 and a20 will be top of
stack and a9…a1 are remained as
such. Then a1 to a9 are already
there. So 0 page faults from a1 to
a9.a10 will replace a20, a11 will
replace a10 and so on. So 11 page
faults from a10 to a20. So total
faults will be 10 + 10 + 11 = 31.
Optimal
a1 to a10 will result in page faults,
So 10 page faults from a1 to a10.
Then a11 will replace a10 because
among a1 to a10, a10 will be used
later, a12 will replace a11 and so
on. So 10 page faults from a11 to
a20 and a20 will be top of stack
and a9…a1 are remained as such.
Then a1 to a9 are already there. So
0 page faults from a1 to a9. a10
will replace a1 because it will not
be used afterwards and so on, a10
to a19 will have 10 page faults.
a20 is already there, so no page
fault for a20. Total faults
10+10+10=30.
Difference = 1

Q.32 (d)

In FIFO scheduling algorithm, it is
possible that page fault rate
increase
even if number allocated frames
increases.

Q.33 (18)
MM size =232 B, Block size =32 B
Direct CM
lines = 512
Address format is

32 bit
Tag LO WO
18 bit Log2 512

=9 bit
Log2 32
=5 bit

Q.34 (78)
 Number of lines=256

Number of sets (S) = 256
128

2


1st time access
0-M (compulsory); 0 mod 128 =0
128-M(compulsory);128 mod 128
=0
256 – M (compulsory and conflict);
256 mod 128 =0
128-H: 128 mod 128 =0
0-M (conflict): 0 mod 128 =0
128- H: 128 mod 128 =0
256 –M (conflict):256 mod 128=0
128-H: 128 mod 128 =0
1-M (compulsory):1 mod 128 = 1

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

129-M(compulsory):129mod
128=1
257-M(compulsory and conflict):
257 mod 128=1
129-H: 129 mod 128=1
1m (compulsory and
conflict):1mod 128=1
129-H: 129 mod 128=1
257–M (compulsory and conflict):
257 mod 128=1
129-H: 129 mod 128=1
Number of conflict miss (C)=6
2nd time access
Cache memory contains some
blocks So, 0 becomes conflict miss
1 becomes conflict miss So, two
more conflict misses are
increases.
9 iteration ⇒ 9×8=72
Total conflict misses = 72+6=78

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3.1 INTRODUCTION

The two main jobs of a computer are I/O
and processing. In many cases, the main
job is I/O, and the processing is merely
incidental. For instance, when we browse a
web page or edit a file, our immediate
interest is to read or type in some
information; it is not to compute an
answer. The role of the operating system in
computer I/O is to manage and control I/O
operations and I/O devices. In many
computer architectures, 3 CPU-instruction
cycles are sufficient to poll a device: read a
device register, logical-and to extract a
status bit, and branch if not zero. The
hardware mechanism that enables a
device to notify the CPU is called an
interrupt.

3.2 INTERRUPTS

The basic interrupt mechanism works as
follows:

The CPU hardware has a wire called the
interrupt line that the CPU senses after
executing every instruction. When the CPU
detects that a controller has asserted a
signal on the interrupt request line, the
CPU saves a small amount of state, such as
the current value of the instruction
pointer, and jumps to the interrupt-
handler routine at a fixed address in
memory. The interrupt handler
determines the cause of the interrupt,
performs the necessary processing, and
executes a return from interrupt
instruction to return the CPU to the
execution state prior to the interrupt. The
device controller raises an interrupt by

asserting a signal on the interrupt request
line, the CPU catches the interrupt and
dispatches to the interrupt handler, and
the handler clears the interrupt by
servicing the device.

Most CPUs have two interrupt request
lines:

i) The non-maskable interrupt, which is
reserved for events such as
unrecoverable memory errors.

ii) The line is maskable: It can be turned
off by the CPU before the execution of
critical instruction sequence that must
not be interrupted. The maskable
interrupt is used by device controllers
to request service.

Although the hardware aspects of I/O are
complex when considered at the level
detail of electronic-hardware designers,
the concepts that we have just described
are sufficient to understand many I/O
aspects of operating systems.

The main concepts:

i) A bus

ii) A controller

3 INTERRUPTS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

iii) An I/O port and its registers

iv) The handshaking relationship between
the host and a device controller.

v) The execution of this handshaking in a
polling loop or via interrupts

vi) The offloading of this work to a DMA
controller for large transfers

3.3 APPLICATIONS I/O INTERFACE

Devices vary in many dimensions, as
shown in Figure below,

i) Character-stream or block: A
character-stream device transfers
bytes one by one whereas a block
device transfers a block of bytes as a
unit.

ii) Sequential or random-access: A
sequential device transfers data in a
fixed order that is determined by the
device, whereas the user of a random-
access device can instruct the device to
seek to any of the available data storage
locations.

Fig Characteristics of I/O devices

i) Synchronous or asynchronous: A
synchronous device is one that

performs data transfers with
predictable response times. An
asynchronous device exhibits irregular
or unpredictable response times.

ii) Sharable or dedicated: A sharable
device can be used concurrently by
several processes or threads; a
dedicated device cannot,

iii) Speed of operation: Device speeds
range from a few bytes per second to a
few Gigabytes per second.

iv) Read-write, read only, or writes only
: Some devices perform both input and
output, but others support only one
data direction.

3.4 BLOCK AND CHARACTER DEVICES

The block-device interface captures all the
aspects necessary for accessing disk drives
and other block-oriented devices. The
exception is that the device understands
commands such as read and write, and, if
it is a random-access device, it has a seek
command to specify which block to
transfer next. Applications normally
access such a device through a file-system
interface. A keyboard is a device that is
accessed through a character-stream
interface. The basic system calls in this
interface enable an application to get or
put one character.

3.5 KERNAL I/O SUBSYSTEM

Kernels provide many services related to
I/O.
The services that are provided by the
Kernel are

i) I/O scheduling,

ii) Buffer caching,

iii) Spooling,

iv) Device reservation, and

v) Error handling.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The I/O system coordinates an extensive
collection of services, which are available
to applications and to other parts of the
kernel.

The I/O subsystem supervises:

i. The management of the name space for
files and devices

ii. Access control to files and devices

iii. Operation control (for example, a
modem cannot seek)

iv. File system space allocation

v. Device allocation

vi. Buffering, caching, and spooling

vii. I/O scheduling

viii. Device status monitoring, error
handling, and failure recovery

ix. Device driver configuration and
initialization

The upper levels of the I/O subsystem
access devices via the uniform interface
provided by the device drives.

3.5.1 Transforming I/O Requests to
Hardware Operations

We described the handshaking between a
device driver and a device controller, but
we did not explain how the operating
system connects an application request to
a set of network wires or to a specific disk
sector. Consider the example of reading a
file from disk. The application refers to the
data by a file name. Within a disk, it is the
job of the file system to map from the file
name through the file-system directories
to obtain the space allocation of the file.

3.5.2 Typical Life Cycle of a I/O
Request

i. A process issues a blocking read
system call to a file descriptor of file
that has been opened previously.

ii. The system-call code in the kernel
checks the parameters for correctness.
In the case of input, if the data are
already available in the buffer cache,
the data are returned to the process
and the I/O request is completed.

iii. Otherwise, a physical I/O needs to be
performed, so the process is removed
from the run queue and is placed on the
wait queue for the device, and the I/O
request is scheduled. Eventually, the
I/O subsystem sends the request to the
device driver.

Depending on the operating system, the
request is sent via a subroutine call or
via an in-kernel message.

iv. The device driver allocates kernel
buffer space to receive the data, and
schedules the I/O. Eventually, the
driver sends commands to the device
controller by writing into the device
control registers.

v. The device controller operates the
device hardware to perform the data
transfer.

vi. The driver may poll for status and data,
or it may have set up a DMA transfer
into Kernel memory. We assume that
the transfer is managed by a DMA
controller, which generates an
interrupt when the transfer completes.

vii. The correct interrupt handler receives
the interrupt via the interrupt-vector
table, stores any necessary data,
signals the device driver, and returns
from the interrupt.

viii. The device driver receives the signal,
determines which I/O request
completed, determines the request's
status, and signals the kernel I/O
subsystem that the request has been
completed.

ix. The kernel transfers data to return
codes to the address space of the

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

requesting process, and moves the
process from the wait queue back to
the ready queue.

x. Moving the process to the ready queue
unblocks the process. When the
scheduler assigns the process to the
CPU, the process resumes execution at
the completion of the system call.

3.6 PERFORMANCE

I/O is a major factor in system
performance. It places heavy demands on
the CPU to execute device-driver code and
to schedule processes fairly and efficiently
as they block and unblock.

3.6.1 Disk Scheduling

One of the responsibilities of the operating
system is to use the hardware efficiently.
For the disk drives, this means having a
fast access time and disk bandwidth. The
access time has two major components.

i) The seek time is the time for the disk
arm to move heads to the cylinder
containing rotate the desired sector.
The rotational latency is the additional
time waiting for the disk to rotate the
desired sector to the disk head.

ii) The disk bandwidth is the total number
of bytes transferred, divided by the
total time between the first request for
service and the completion of the last
transfer. We can improve both the
access time and the bandwidth by
scheduling the servicing of disk I/O
requests in a good order. Whenever a
process needs I/O to or from the disk,
it issues a system call to the operating
system. The request specifies several
pieces of information like

i. Whether this operation is input or
output

ii. What the disk address for the transfer
is

iii. What the memory address for the
transfer is

iv. What the number of bytes to the
transferred is

3.6.2 FCFS Scheduling

The simplest form of disk scheduling is,
first-come, first-serve (FCFS). This
algorithm is intrinsically fair, but it
generally does not provide the fastest
service. Consider, a disk queue with
requests for I/O to blocks the fastest
service.

98, 183, 37, 122, 14, 124, 65, 67 in that
order. If the disk head is initially at cylinder
53, it will first move from 53, to 98, then to
183, 37, 122, 14, 124 65 and finally to 67,
for a total head movement of 640
cylinders. The schedule is diagrammed in
the following figure.

The problem with this schedule is
illustrated by the wild swing from 122 to
14 and

then back to 124. If the requests for
cylinder 37 and 14 could be serviced
together, before or after the requests at
122 and 124, the total head movement
could be decreased substantially
performance could be thereby improved

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3.6.3 SSTF Scheduling

It is reasonable to service all the requests
close to the current head position, before
moving the head far away to service other
requests. This assumption is the basis for
the shortest-seek-time-first(SSTF)
algorithm.

For our example request queue, the closest
request to the initial head position (53) is
at cylinder 65. Once we are at cylinder 65,
the next closet request is at cylinder 67.
From there, the request at cylinder 37 is
closer than 98, so 37 is served next.
Continuing, we service the request at
cylinder 14, then 98, 122, 124, and finally
at 183 (Figure). This scheduling method
results in a total head movement of only
236 cylinders, little more than one-third of
the distance needed for FCFS scheduling.
This algorithm gives a substantial
improvement in performance.

SSTF scheduling is essentially a form of
shortest-job-first (SJF) scheduling, and,
like SJF scheduling, it may cause starvation
of some requests.

Although the SSTF algorithm is a
substantial improvement over the FCFS
algorithm, it is not optimal. In the example,
we can do better by moving the head from
53 to 37, even though the latter is not
closet, and then to 14, before turning
around to service 65, 67, 98, 122, 124 and
183. This strategy reduces the total head
movement to 208 cylinders.

3.6.4 SCAN Scheduling

In the SCAN algorithm, the disk arm starts
at one end of the disk, and moves toward
the other end, servicing requests as it
reaches each cylinder, until it gets to the
other end of the disk. At the other end, the
direction of head movement is reversed,
and servicing continues. The head
continuously scans back and forth across
the disk.

Before applying SCAN to schedule and
requests on cylinders 98, 183, 37, 122, 14,
124, 65, and 67, it is required to know the
direction of head movement, in addition to
the head's current position (53). If the disk
arm is moving toward 0, the head will
service 37 and then 14. At cylinder 0, the
arm will reverse and will move toward the
other end of the disk, servicing the
requests at 65, 67, 98, 122, 124, and 183. If
a request arrives in the queue just in front
of the head, it will be serviced almost
immediately; a request arriving just
behind the head will have to wait until the
arm moves to the end of the disk, reverses
direction, and comes back.

The SCAN algorithm is sometimes called
the elevator algorithm, since the disk arm
behaves just like an elevator in a building,
first servicing all the requests going up and
then reversing to service requests the
other way.

Fig SCAN SCHEDULING

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

3.6.5 C-SCAN Scheduling

Circular SCAN(C-SCAN) is variant of SCAN
that is designed to provide a more uniform
wait time, Like SCAN, C-SCAN moves the
head from one end of the disk to the other,
servicing requests along the way. When
the head reaches the other end, however, it
immediately returns to the beginning of
the disk.

Fig C-SCAN SCHEDULING

3.6.6 LOOK Scheduling

Both SCAN and C-SCAN move the disk arm
across the full width of the disk. In
practice, neither algorithm is implemented
this way. More commonly, the arm goes
only as far as the final request in each
direction. Then, it reverses direction
immediately, without first going all the
way to the end of the disk. These versions
of SCAN are called LOOK and C-LOOK,
because they look for a request before
continuing to move in a given direction.

3.6.6 Selection of a Disk-Scheduling
Algorithm

SSTF is common and has natural appeal.
SCAN and C-SCAN perform better for
systems that place a heavy load on the
disk, because they are less likely to have
the starvation problem.

With any scheduling algorithm, however,
performance depends heavily on the
number and types of requests. For
instance, suppose that the queue usually
has just one outstanding request. Then, all
scheduling algorithms are forced to heave
the same, because they have only one
choice for where to move the disk head.
They all behave like FCFS scheduling.

The requests for disk service can be
greatly influenced by the file-allocation
method. A program reading a contiguously
allocated file will generate several
requests that are close together on the
disk, resulting in limited head movement.
A linked or indexed file may include blocks
that are widely scattered on the disk,
resulting in greater head movement.
Because of these complexities, the disk-
scheduling algorithm should be written as
a separate module of the operating system,
so that it can be replaced with a different
algorithm if necessary.

3.7 STABLE–STORAGE
IMPLEMENTATION

We introduced the concept of a write-head
log, which required the availability of
stable storage. By definition, information
residing in stable storage is never lost. To
implement such storage, we need to
replicate the needed information on
multiple storage devices with independent
failure modes.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

A disk write results in one of three
outcomes:

a) Successful completion: The data
were written correctly on disk.

b) Partial failure: A failure occurred in
the midst of transfer, so only some of
the sectors were written with the new
data and the sector being written
during the failure may have been
corrupted.

c) Total failure: The failure occurred
before the disk write started, so the
previous data values on the disk
remain intact. We require that,
whenever a failure occurs during
writing of a block, the system detects it
and invokes a recovery procedure to
restore the block to a consistent state.
To do that, the system must maintain
two physical blocks for each logical
block. An output operation is executed
as follows:

i. Write the information onto that first
physical block.

ii. Went the first write completes
successfully, write the same
information onto the Second physical
block.

iii. Declare the operation complete only
after the second write completes
successfully

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Which of the following does not
interrupt a running process?
a) A device
b) Timer
c) Scheduler process
d) Power failure

[GATE -2001]

Q.2 Consider an operating system
capable of loading and executing a
single sequential user process at
a time. The disk head scheduling
algorithm used is First Come First
Served (FCFS). If FCFS is replaced
by Shortest Seek Time First
(SSTF), claimed by the vendor to
give 50% better benchmark
results, what is the expected
improvement in the IN/OUT
performance of user programs?
a) 50% b) 40%
c) 25% d) 0%

[GATE-2004]

Q.3 Consider a disk system with 100
cylinders. The requests to access
the cylinders occur in following
sequence
4, 34, 10, 7, 19, 73, 2, 15, 6, 20
Assuming that the head is
currently at cylinder 50, what is
the time taken to satisfy all
requests, if it takes 1 ms to move
from one cylinder to adjacent one
and shortest seek time first policy
is used?
a) 95 ms b) 119 ms
c) 233 ms d) 276 ms

 [GATE-2009]

Q.4 Suppose the following disk request
sequence (track numbers) for a

disk with 100 tracks is given: 45,
20, 90, 10, 50, 60, 80, 25, 70.
Assume that the initial position of
the R/W head is on track 50. The
additional distance that will be
traversed by the R/W head when
the Shortest Seek Time First
(SSTF) algorithm is used
compared to the SCAN (Elevator)
algorithm(assuming that SCAN
algorithm moves towards 100
when it starts execution) is
_________ tracks.

[GATE–2015]

Q.5 Consider a disk queue with
requests for I/O to blocks on
cylinders 47, 38, 121, 191, 87, 11,
92, 10.
The C-LOOK scheduling algorithm
is used. The head is initially at
cylinder number 63, moving
towards larger cylinder numbers
on its servicing pass. The cylinders
are numbered from 0 to 199.
The total head movement (in
number of cylinders) incurred
while servicing these requests is

 [GATE–2016]

GATE QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1 2 3 4 5

(a) (d) (b) 10 165

Q.1 (a)
Device can not interrupt a running
process but timer, scheduler and
power failure can interrupt a
running process.

Q.2 (d)
It is important to note that SSTF
(Shortest Seek Time First) is the
optimal scheduling scheme for the
access of file only. Therefore, the
IN/OUT performance of the user
program is determined by many
input and output devices and not
only by disk. So, when FCFS is
replaced by SSTF it improves only
disk performance. This does not
improve the entire IN/OUT
performance.
This implies, improvement
performance of user program is
0%.

Q.3 (b)
Requests 4, 34, 10, 7, 19, 73, 2, 15, 6,
20
Current 50 34 20 19 15 10 7 6 4 2
Next access 34 20 19 15 10 7 6 4 2
73
Difference 16 14 1 4 5 3 1 2 2 71
Therefore, total moves
=16+14+1+4+5+3+1+2+2+71=119m
s

Q.4 (10)
In Shortest seek first (SSTF),
closest request to the current
position of the head, and then
services that request next. In SCAN
(or Elevator) algorithm, requests
are serviced only in the current
direction of arm movement until
the arm reaches the edge of the
disk. When this happens, the
direction of the arm reverses, and
the requests that were remaining
in the opposite direction are
serviced, and so on.
Given a disk with 100 tracks
And Sequence 45, 20, 90, 10, 50,
60, 80, 25, 70.
Initial position of the R/W head is
on track 50.
In SSTF, requests are served as
following
Next Served Distance Traveled

50 0
45 5
60 15
70 10

80 10
90 10
25 65
20 5
10 10

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

http://en.wikipedia.org/wiki/Shortest_seek_first
http://en.wikipedia.org/wiki/Elevator_algorithm
http://en.wikipedia.org/wiki/Elevator_algorithm

Total Dist = 130

If Simple SCAN is used, requests
are served as following
Next Served Distance Traveled

50 0
60 10
70 10
80 10
90 10
 45 65
[disk arm goes to
100, then to 45]
25 20
20 5
10 10

Total Dist = 140
Extra Distance traveled in SSTF=
140-120=-10
If SCAN with LOOK is used,
requests are served as following
Next Served Distance Traveled

50 0
60 10
70 10
80 10
90 10
45 45

[disk arm comes back
from 90]

25 20
20 5
10 10

Total Dist= 120
Extra Distance traveled in
SSTF=130 120=10

Q.5 (165)
The head movements are:
63  87 24 movements
87  92 5 movements
92  121 29 movements
121  191 70 movements
191 10 0 movement
10  11 1 movement
11 38 27 movements
38  47 9 movements

Total head movements = 165

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4.1 INTRODUCTION

The file system consists of two distinct
parts:
i) A collection of files, each storing

related
data, and

ii) A directory structure, which organizes
and provides information about all the
files in
the system.

4.2 FILE CONCEPT

A file is a named collection of related
information that is recorded on secondary
storage. A file is a sequence of bits, lines or
records whose meaning is defined by the
file’s creator and user.

4.2.1 File Attributes

A file has certain other attributes, which
vary from one operating system to another,
but typically consist of these:
(i) Name : The symbolic file name is the

only information kept in human-
readable form.

(ii) Type : This information is needed for

those systems that support difference
types.

(iii) Location: This information is a pointer
to a device and to the location of the file
on that device.
Size : The current size of the file (in
bytes, words or blocks), and possibly
the maximum allowed size are
included in this attribute.

(v)Protection: Access-control
information controls who can do
reading, writing, executing, and so on.

(iv) Time, date and user identification :
This information may be kept for

1) creation
2) last modification, and
3) last use.

These data can be useful for protection,
security & usage monitoring.

4.2.2 File Operations

A file is an abstract data type.
1) Creating a file: Two steps are

necessary to create a file.
a) Space in the file system must be

found for the file
b) An entry for the new file must be

made in the directory. The
directory entry records the name of
the file and the location in the file
system.

2) Writing a file: To write a file, we make
a system call specifying both name of
the file and the information to be
written to the file. Given the name of
the file, the system searches the
directory to find the location of the file.
The system must keep a write pointer
to the location in the file where the
next write is to take place. The write
pointer must be updated whenever a
write occurs.

3) Reading a file: To read from a file, we
use a system call that specifies the
name of the file and where (in memory)
the next block of the file should be put.
Again, the directory is searched for the
associated directory entry, and the
system needs to keep a read pointer to
the location in the file where the next
read is to take place. Once the read has
taken place, the read pointer is updated.
Since, in general, a file is either being
read or written, most systems keep

4 FILE MANAGEMENT

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

only one current-file-position pointer.
Both the read and write operations use
this same pointer, saving space and
reducing the system complexity.

4) Repositioning within a file: The
directory is searched for the
appropriate entry, and the current-file-
position is set to a given value.
Repositioning within a file does not
need to involve any actual I/O. This file
operation is also known as a file seek.

5) Deleting a file: To delete a file, we
search the directory for the named
file. Having found the associated
directory entry, we release all file space
(so that it can be reused by other files)
and erase the directory entry.

6) Truncating a file: There are occasions
when the user wants the attributes of
a file to remain the same, but wants to
erase the contents of the file. Rather
than forcing the user to delete the file
and then recreate it, this function
allows all attributes to remain
unchanged (except for the length) but
for the file to be reset to length zero.
There are several pieces of information
associated with an open file.

7) File pointer: On systems that do not
include a file offset as part of the read
and write system calls, the system must
track the last read/write location as a
current file-position pointer. This
pointer is unique to each process
operating on the file, and therefore
must be kept separate from the on-disk
file attributes.

8) File open count: As files are closed, the
operating system must reuse its open-
file table entries, or it could run out of
space in the table. Because multiple
processes may open a file, the system
must wait for the last file to close before
removing the open- file table entry, this
counter tracks the number of opens
and closes, and reaches zero on the last

close. The system can then remove the
entry.

9) Disk location of the file: Most File
operations require the system to
modify data within the file. The
information needed to locate the file to
disk is kept in memory to avoid having
to read it from disk for each operation.

4.2.3 File Types

A common technique for implementing
file types is to include the type as part of
the file name. The name is split into two
parts.
A name and an extension, usually
separated by a period character.

4.2.4 File Structure

File types also may be used to indicate the
internal structure of the file. As mentioned
in Section. Source and object files have
structures that match the expectations of
the programs that read them.

4.2.5 Internal File Structure

In either case, the file may be considered to
be a sequence of blocks. All the basic I/O
functions operate in terms of blocks. The
conversion from logical records to physical
blocks is a relatively simple software
problem.

4.3 ACCESS METHODS

Files store information. When it is used,
this information must be accessed and
read into computer memory.

4.3.1 Sequential Access

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The simplest access method is sequential
access. Information in the file is processed
in order, one record after the other.

4.3.2 Direct Access

Another method is direct access (or
relative access). A file is made up of fixed-
no particular order. The direct access
method is based on a disk model of a file,
since disks allow random access to any file
block. For direct access, the file is viewed as
a numbered sequence of blocks or records.
A direct-access file allows arbitrary blocks
to be read or written. Thus, we may read
block 14, then read block 53, and then
write block 7. There are no restrictions on
the order of reading or writing for a direct-
access file. The file operations must be
modified to include the block number as a
parameter.
Thus, we have read n, where n is the block
number, rather than read next, and write
n, rather than write next. An alternative
approach is to retain read next and write
next, as with sequential access, and to add
an operation, position file to n, where n is
the block number. Then, to affect a read n,
we would position to n and then read next.
The block number provided by the user to
the operating system is normally a relative
block number. A relative block number is
an index relative to the beginning of the file.
Thus, the first relative block of the file is 0,
the next is 1, and so on, even though the
actual absolute disk address of the block
may be 14703 for the first block, and 3192
for the second. The use of relative block
numbers allows the operating system to
decide where the file should be placed

(called the allocation problem, and helps to
prevent the user from accessing portions of
the file system that may not be part of his
file. Some systems start their relative block
numbers at 0; others start at 1. Given a
logical record length L, a request for record
N is turned into an I/O request for L bytes
at location L + (N - 1) within the file.

4.3.3 Other Access Methods

Other access methods can be built on top of
a direct-access method. These additional
methods generally involve the construction
of an index for the file. The index, like an
index in the back of a book, contains
pointers to the various blocks. To find an
entry in the file, we first search the index,
and then use the pointer to access the file
directly and to find the desired entry. With
large files, the index file itself may become
too large to be kept in memory. One solution
is to create an index for the index file. The
primary index file would contain pointers
to secondary index files, which would point
to the actual data items. This organization is
usually done in two parts.

i) The file system is broken into
partitions, known as minidisks.

ii) Each partition contains information
about files within it. This information
is kept in entries in a device directory
or volume table of contents. The device
directory (more commonly known
simply as a "directory") records
information - such as name, location,
size, and type - for all files on that
partition.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 Fig. A typical file-system organization

4.4 SINGLE-LEVEL DIRECTORY

The simplest directory structure is the
signal-level directory. All files are
contained in the same directory, which is
easy to support and understand.

4.4.1 Two-Level Directory

The major disadvantage to a single-level
directory is the confusion of file names
between different users. The standard
solution is to create a separate directory
for each user.

4.4.2 Tree-Structure Directories

Once we have seen how to view a two-level
directory as a two-level tree, the natural
generalization is to extend the directory
structure to a tree of arbitrary height.
This generalization allows users to create
their own sub-directories and to organize
their files accordingly.

4.4.3 Protection

When information is kept in a computer
system, a major concern is its protection
from both physical damage (reliability)
and improper access (protection).
Reliability is generally provided by
duplicate copies of files.

4.5 TYPES OF ACCESS

Protection mechanisms provide controlled
access by limiting the types of file access
that can be made; Access is permitted or
denied depending on several factors, one
of which is the type of access requested.
Several different types of operations may
be controlled:
Read : Read from the file.
Write : Write or rewrite the file.
Execute : Load the file into memory and
execute it.
Append : Write new information at the
end of the file.
Delete : Delete the file and free its space
for possible reuse.
List : List the name and attributes of the
file.
Other operations, such as renaming,
copying, or editing the file, may also be
controlled.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4.5.1 Access Lists and Groups

Many systems three classification of users
in connection with each fie:
i) Owner : who created the file is the

owner.
ii) Groups : A set of users who are sharing

the file and need similar access is a
group, or workgroup.

iii)Universe : All other users in the system
constitute the universe.

4.5.2 Other Protection Approaches

There is another approach to the
protection problem, which is to associate a
password with each file. Just as access to
the computer system itself is often
controlled by a password access to each
file can be controlled by a password.

4.6 ALLOCATION METHODS

Three major methods of allocating disk
space are in wide use: contiguous, lined,
and indexed. Each method has its
advantages and disadvantages.

4.6.1 Contiguous Allocation

The contiguous allocation method
requires each file to occupy a set of
contiguous blocks on the disk. Disk
addresses define a linear ordering on the
disk.

Fig. Contiguous allocation of disk space.

Contiguous allocation of a file is defined by
the disk address and length (in block
units) of the first block. If the file is n
blocks long, and starts at location b, then it
occupies blocks b, b + 1, b + 2, …. , b + n - 1.
First fit and best fit are the most common
strategies used to select a free hole from
the set of available holes.
These algorithms suffer from the problem
of external fragmentation. A major
problem is determining how much space is
needed for a file. When the file is created,
the total amount of space it will need must
be found and allocated. A file that grows
slowly over a long period (months or
years) must be allocate enough space for
its final size, even though much of that
space may be unused for long time. The
file, therefore, has a large amount of
internal fragmentation.

4.6.2 Linked Allocation

Linked allocation solves all problems of
contiguous allocation. With linked
allocation, each file is a linked list of disk
blocks; the disk blocks may be scattered
anywhere on the disk. To create a new file,
we simply create a new entry in the
directory. With linked allocation, each
directory entry has a pointer to the first,
disk blocks of the file. The pointer is
initialized to nil (the end – of- list pointer
value) to signify an empty file. A write to
the file causes free blocks to be found via
the free-space management system, and
this new block is then written to, and is
linked to the end of the file. To read a file,
we simply read blocks by following the
pointers from block to block. There is no
external fragmentation with linked
allocation.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4.6.3 Disadvantages of Linked
allocation

i) The major problem is that it can be
used effectively for only sequential-
access files. To find the ith blocks of a
file, we must start at the beginning of
that file, and follow the pointers until
we get to the ith block. Each access to a
pointer requires a disk read, and
sometimes a disk seek. Consequently, it
is inefficient to support a direct-access
capability for linked allocation files.

ii) The space required for the pointers. If
a pointer requires 4 bytes out of a 512-
byte block, then 0.787 percent of the
disk is being used for pointers, rather
than for information. Each file requires
slightly more space than it otherwise
would. The usual solution to this
problem is to collect blocks into
multiplies, called clusters, and to
allocate the clusters rather than blocks.
Another problem is reliability. Since
the files are linked together by pointers
scattered all over the disk, consider
what would happen if a pointer were
lost or damaged. An important
variation on the linked allocation
method is the use of a file-allocation
table (FAT). This simple but efficient
method of disk-space allocation is used

by the MS-DOS and OS/2 operating
system. A section of disk at the
beginning of each partition is set aside
to contain the number, the FAT is used
much as is a linked list. The directory
entry contains the block number of the
first block of the file. The table entry
indexed by that block number then
contains the block number of the next
block in the file. This chain continues
until the last block which has a special
end-of-file value as the table entry.

Fig. File-allocation table

4.6.4 Indexed Allocation

Linked allocation solves the external-
fragmentation and size-declaration
problems of contiguous allocation.
However, in the absence of a FAT, linked
allocation cannot support efficient direct
access, since the pointers to the blocks are
scattered with the blocks themselves all
over the disk and need to be retrieved in
order. Indexed allocation solves this
problem by bringing all the pointers
together into one location: the index block.
Each file has its own index block, which is
an array of disk-block addresses. The ith
entry in the index block points to the ith
block of the file. The directory contains the
address of the index block. Indexed
allocation supports direct access, without
suffering from external fragmentation,

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

because any free block on the disk may
satisfy a request for more space. Indexed
allocation does suffer from wasted space.
The pointer overhead of the index block is
generally greater than the pointer
overhead of linked allocation.

4.7 FREE-SPACE MANAGEMENT

Since there is only a limited amount of disk
space, it is necessary to reuse the space
from deleted files for new files, if possible.
To keep track of free disk space, thus
system maintains a free-space list.

4.7.1 Bit Vector

Frequently, the free-space list is
implemented as a bit map or bit vector.
Each block is represented by 1 bit. If the
block is free the bits is 1; if the blocks is
allocated, the bit is 0. Consider a disk
where block 2, 3, 4, 5, 8, 9, 10, 11, 13, 17,
18, 25, 26, and 27 are free, and the rest of
the blocks are allocated. The free-space bit
map would be
00111100111111100001100000011100
000….
The main advantage of this approach is
that it is relatively simple and efficient to
find the first free block, or n consecutive
free blocks on the disk. The calculation of
the block number (number of bits per
word) x (number of 0-value words) +
offset of first 1 bit).

4.7.2 Linked List

Another approach is to link together all the
free disk blocks, keeping a pointer to the
first free block in a special location on the
disk and caching it in memory. The first
block contains a pointer to the next free
disk block, and so on.

4.7.3 Grouping

A modification of the free-list approach is
to store the address of n free blocks in the
first free block. The first n -1 of these
blocks are actually free. The last block
contains the addresses of another n free
block, and so on. The importance of this
implementation is that the addresses of a
large number of free blocks can be found
quickly, unlike in the standard linked-list
approach.

4.7.4 Counting

Generally, several contiguous blocks may
be allocated or freed simultaneously,
particularly when space is allocated with
the contiguous allocation algorithm or
through clustering. Thus, rather than
keeping a list of n free disk address, we can
keep the address of the first free block and
the number n of free contiguous blocks
that follow the first block.

4.8 DIRECTORY IMPLEMENTATION

The selection of directory-allocation and
directory-management algorithms has a
large effect on the efficiency, performance,
and reliability of the file system. Therefore,
it is important to understand the tradeoffs
involved in these algorithms.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

4.8.1 Linear List

The simplest method of implementing a
directory is to use a linear list of file names
with pointers to the data blocks. This
method is simple to program but is time-
consuming to execute. To create a new file,
we must first search the directory to be
sure that no existing file has the same
name. Then, we add a new entry at the end
of the directory. To delete a file, we search
the directory for the named file, then
release the space allocated to it.
The real disadvantage of a linear list of
directory entries is the linear search to
find a file. A sorted list allows a binary
search and decreases the average search
time. However, the requirement that the
list must be kept sorted may complicate
creating and deleting files, since we may
have to move substantial amounts of
directory information to maintain a sorted
directory.

4.8.2 Hash Table

Another data structure that has been used
for a file directory is a hash table. In this
method, a linear list stores the directory
entries, but a hash data structure is also
used. The hash table takes a value
computed from the file name and returns a
pointer to the file name in the linear list.
Therefore, it can greatly decrease the
directory search time.

4.8.3 Unix INODE Implementation

Disk Block Size
Owner
Location
Date and Time Stamp
Reference Count
Direct x
Direct y
.
.
.
Single Indirect
Double Indirect
Triple Indirect

Total File Size of system =
{ No of direct DBA’s + (DB size/DBA) +
(DB size/DBA)2 + (DB size/DBA)3 + …. }

DB Size = Disk Block Size
DBA = Disk Block Address

DB Size/DBA = No of block address
possible to place in one disk block.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Using a larger block size in a fixed
block size file system leads to
a) better disk throughput but

poorer disk space utilization
b) better disk throughput and

better disk space utilization
c) poorer disk throughput but

better disk space utilization
d) poorer disk throughput at and

poorer disk space utilization
[GATE-2003]

Q.2 A Unix-style i-node has 10 direct
pointers and one single, one
double and one triple indirect
pointer. Disk block size is 1 Kbyte;
disk block address is 32 bit, and 48-
bit integers are used. What is the
maximum possible file size?

a) 224 byte b) 232 byte

c) 234 byte d) 248 byte
[GATE-2004]

Q.3 The data blocks of a very large file
in the Unix file system are
allocated using
a) contiguous allocation
b) linked allocation
c) indexed allocation
d) an extension of indexed

allocation
[GATE-2008]

Q.4 A file system with 300 Gbyte disk
uses a file descriptor with 8 direct
block addresses, 1 indirect block
address and 1 doubly indirect
block address. The size of each
disk block is 128 byte and the size
of each disk block address is 8
byte. The maximum possible file
system is

a) 3 Kbyte
b) 35 Kbyte
c) 280 Kbyte
d) dependent on the size of the
disk

 [GATE-2012]

Q.5 Suppose a disk has 201 cylinders,
numbered from 0 to 200. At some
time the disk arm is at cylinder
100, and there is a queue of disk
access requests for cylinders 30,
85, 90, 100, 105, 110, 135, and
145. If Shortest-Seek Time First
[SSTF] is being used for scheduling
the disk access, the request for
cylinder 90 is serviced after
servicing _________ number of
requests. [GATE–2014]

Q.6 A FAT (file allocation table) based
file system is being used and the
total overhead of each entry in the
FAT is 4 bytes in size. Given a 100
× 106 bytes disk on which the file
system is stored and data block
size is 103 bytes, the maximum size
of the file that can be stored on this
disk in units of 106 bytes is _______

 [GATE–2014]

Q.7 in a file allocation system, which
of the following allocation scheme
(s) can be used if no external
fragmentation is allowed ?
I. Contiguous II Linked
III. Indexed
a) I and III only
b) II only
c) III only
d) II and III only

[GATE–2017]

GATE QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 (a)
Using larger block size makes disk
utilization poorer as more space
would be wasted for small data in a
block. It may make throughput
better as the number of blocks
would decrease.

Q.2 (b)
Size of Disk Block = 1Kbyte
Disk Blocks address = 32bits,
but 48 bit integers are used for
address
Therefore address size = 6 bytes
No of addresses per block = 1024/6
= 170.66
Therefore 170 ≈ 2^7 addresses per
block can be stored
Maximum File Size = 10 Direct + 1
Single Indirect + 1 Double Indirect +
1 Triple Indirect
= 10 + 27 + 227*227 + 227*227*227
& apporx; 222 Blocks
Since each block is of size 210

Maximum files size = 222 * 222= 232

Q.3 (d)
Indexed allocation is used for the
efficient direct access good use of
disk space. However, it cannot

allocate very large files. Thus, the
data blocks of very large file in UNIX
system are allocated using an
extension of indexed allocation or
EXT2 file system.

Q.4 (b)
8 direct block pointers
1 indirect block pointer
1 doubly indirect block pointer

Block size =128 = 27 byte

Disc block address = 8 byte = 23 byte
Number of pointers in 1 disc block

7
4

3

2
2

2


Maximum size of file
= (8 × 27 + 24 × 27 + 24 × 24 × 27)

 3 7 11 152 2 2 2   

 10 11 152 2 2  

=1Kbyte+2Kbyte+32Kbyte=35Kbyte
Q.5 (3)

Request for cylinder is served after
serving 3 requests (100,105 & 110)

1 2 3 4 5 6 7

a b d b 3 99.6 d

ANSWER KEY:

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.6 (99.6)
Number of entries in the FAT = Disk
Capacity/Block size= 108/103 = 105
Total space consumed by FAT = 105
* 4 B = 0.4 * 106 B
Maximum size of file that can be
stored=100*106–0.4*106=99.6*106 B

Q.7 (d)
Linked and indexed allocated are
non contiguous so, they will not
suffer from external fragmentation

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.1 Virtual memory is
a) An externally large main memory
b) An externally large secondary

memory
c) An illusion of an extremely large

memory
d) A type of memory used in super

computers

Q.2 Spatial localities refers to the
problem that once a location is
referenced
a) It will not be referenced again
b) It will be referenced again
c) A nearby location will be

referenced soon
d) None of the above

Q.3 Which of the following is an example
of a SPOOLED device?
a) The terminal used to enter the

input data for a program being
executed.

b) The secondary memory device in
a virtual memory system

c) A line printer used to print the
output of a number of jobs.

d) None of the above.

Q.4 Page fault occurs when
a) The page is corrupted by

application software
b) The page is main memory
c) The page is not in main memory
d) One tries to divide a number by 0

Q.5 Overlay is
a) A part of the operating system
b) A specific memory location
c) A single contiguous memory that

used in the olden days for
Running large programs by
swapping.

d) Overloading the system with
many user files

Q.6 Determine the number of page
faults when references to pages
occur in the order -1, 2, 4, 5, 2, 1, 2,
4. Assume that the main memory
can accommodate 3 pages and the
main memory already has the pages
1 and 2, with page 1 having been
brought earlier than page 2.
(Assume LRU algorithm is used)
a) 3 b) 5
c) 4 d) None of the above

Q.7 Concurrent processes are processes
that
a) Do not overlap in time
b) Overlap in time
c) Are executed by a processor at

the same time
d) None of the above

Q.8 The page replacement policy that
sometimes leads to more page faults
when the is size of the memory is
increased is
a) FIFO
b) LRU
c) No such policy exists
d) None of the above

Q.9 The only state transition that is
initiated by the user process itself is
a) Block b) dispatch
c) Wakeup d) None of the above

Q.10 Working set (t, k) at an instant of
time, t, is the set of
a) K future reference that the

operating system will make
b) Future reference that the

operating system will make in
the next ‘k’ time units

c) K reference with high frequency
d) Pages that have been referenced

in the last k time units

ASSIGNMENT QUESTIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.11 Fragmentation is
a) dividing the secondary memory

into equal sized fragments
b) dividing the main memory into

equal-sized fragments
c) Fragments of memory words

used in a page
d) Fragments of memory words

unused in a page

Q.12 Which of the following are real-time
systems?
a) An on-line railway reservation

system
b) A process control system
c) Aircraft control system
d) Payroll processing system

Q.13 Dijkstra’s banking algorithm in a
operating system solves the
problem of
a) Deadlock avoidance
b) Deadlock recovery
c) Mutual exclusion
d) Context switching

Q.14 In page memory systems, if the page
size is increased, then the internal
fragmentation generally
a) Becomes less
b) Becomes more
c) Remains constant
d)none of the above

Q.15 An operating system contains 3 user
processes each requiring 2 units of
resource R. The minimum number
of units of R such that no deadlock
will ever occur is
a) 3 b)4
c) 5 d) 6

Q.16 Critical region is
a) a part of operating system which

is not allowed to be accessed by
any process

b) a set of instructions that access
common shared resource which
exclude one another in time

c) the portion of the main memory
which can be accessed only by
one process at a time

d) None of the above

Q.17 Kernel is
a) Considered as the critical part of

the operating system
b) The software which monitors

the operating system
c) The set of primitive function

upon which the rest of operating
system functions are built up.

d) None of the above

Q.18 With a single resource, deadlock
occurs
a) If there are more than two

processes competing for that
resource

b) If there are only two processes
competing for that resource

c) If there is a single process
competing for that resource

d) None of the above

Q.19 Necessary conditions for deadlock
are
a) Non-pre-emption & circular wait
b) Mutual exclusion & partial

allocation
c) Both (a) and (b)
d) None of the above

Q.20 In a time-sharing operating system,
when the time slot given to a
process is completed, the process
goes from the RUNNING state to the
a) BLOCKED state
b) READY state
c) SUSPENDED state
d) TERMINATED state

Q.21 At a particular time, the value of a
counting semaphore is 10. It will
become 7 after
a) 3 V operation
b) 3 P operation
c) 3 V operation and 3 P operations
d) 13 P operation & 10 v operation

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.22 Supervisor call
a) Is a call made by the supervisor

of the system?
b) Is a call with control functions?
c) Are privileged calls that are used

to perform resource management
functions, which are controlled
by the operating system.

d) Is a call made by someone
working in root directory?

Q.23 Semaphores are used to solve the

problem of
a) Race condition
b) Process synchronization
c) Mutual exclusion
d) None of the above

Q.24 If the property of locality of

reference is well pronounced in a
program
a) The number of page faults will be

more
b) The number of page faults will

be less
c) The number of page faults will

remains the same
d) Execution will be faster

Q.25 At a particular time of computation,

the value of a counting semaphore is
7. Then 20p operations and ‘x’ v
operation were completed on this
semaphore. If the final value of the
semaphore is 5, x will be
a) 15 b) 22
c) 18 d) 13

Q.26 Pre-emptive scheduling, is the

strategy of temporarily suspending a
running process
a) Before the CPU time slice expires
b) To allow starving processes to run
c) When it requests I/O
d) None of the above

Q.27 Mutual exclusion problem occurs

a) Between two disjoint processes
that do not interact

b) Among process that share
resource

c) Among process that do not use
the same resource

d) None of the above

Q.28 Sector interleaving in disks is done by

a) The disk manufacturer
b) The disk controller code
c) The operating system
d) None of the above

Q.29 Memory protection is of no use in a

a) Single user system
b) Non-multiprogramming system
c) Non-multitasking system
d) None of the above

Q.30 Some computer system support dual

mode operation-the user mode and
the supervisor or monitor mode.
These refer to the modes
a) By which user program handle

their data
b) By which the operating system

executes user programs
c) In which the processor and the

associated hardware operate.
d) Of memory access

Q.31 Disk scheduling involves deciding

a) which disk should be accessed
next

b) the order in which disk access
requests must be serviced.

c) the physical location where files
should be accessed in the disk

d) none of the above
Q.32 A computer system has 6 tape

drives, with ‘n’ process is competing
for them. Each process may need 3
drives. The maximum value of ‘n’ for
which the system is guaranteed to
be deadlock free is.

 a) 2 b) 3
 c) 4 d) 1

Q.33 Dirty bit is used to show the

a) page with corrupted data

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

b) wrong page in the memory
c) page that is modified after being

loaded into cache memory
d) page that is less frequently

accessed

Q.34 Fence register is used for
a) CPU protection
b) Memory protection
c) File protection
d) all of the above

Q.35 Which of the following is the service
not supported by the operating
system?
a) Protection b) Accounting
c) Compilation d)I/O operation

Q.36 The first-fit, best-fit and the worst-
fit algorithm can be used for
a) contiguous allocation of memory
b) linked allocation of memory
c) indexed allocation of memory
d) all of the above.

Q.37 Which of the following are single-
user operating systems?
a) MS-DOS b) UNIX
c) XENIX d) OS/2

Q.38 In Round Robin CPU scheduling, as
the time quantum is increased, the
average turnaround time

a) Increases
b) Decreases
c) Remains constant
d) Varies irregularly

Q.39 In a multiprogramming environment
a) the processor executes more

than one process at a time
b) the programs are developed by

more than one person
c) more than one process resides in

the memory
d) a single user can execute many

programs at the same time.

Q.40 Which of the following are true?

a) A re-entrant procedure can be
called any number of times.

b) A re-entrant procedure can be
called even before the procedure
has not returned from its
previous call.

c) Re-entrant procedures cannot be
called recursively.

d) Re-entrant procedures can be
called recursively.

Q.41 In a paged memory, the page hit
ratio is 0.35. The time required to
access a page in secondary memory
is equal to 100 ns. The time required
to access a page in primary memory
in 10 ns. The average time required
to access a page is
a) 3.0 ns b) 68.0 ns
c) 68.5 ns d) 75.5 ns

Q.42 A state is safe if the system can
allocate resources to each process
(up to its maximum) in some order
and still avoid deadlock.
Which of the following are true?
a) Deadlock state is unsafe.
b) Unsafe state may lead to a

deadlock situation.
c) Unsafe state must lead to a

deadlock situation.
d) Deadlock state is a subset of a

unsafe state.

Q.43 The size of the virtual memory
depends on the size of
a) data-bus b) main memory
c) address bus d) none of the above

Q.44 In a multi-user operating system, 20
requests are made to use a
particular resource per hour, on an
average. The probability that no
request are made in 45 minutes is
a) e-15 b) e-5

c) 1 – e-5 d) 1 – e-10

Q.45 In which of the scheduling policies
does context switching never take
place during process execution?

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

a) Round-robin
b) Non Pre-emptive Shortest job first
c) Pre-emptive
d) First-cum-first-served

Q.46 In which of the following directory
systems, is it possible to have
multiple complete paths for a file,
starting from the root directory?
a) Single level directory
b) Two level directory
c) Tree structured directory
d) Acyclic graph directory

Q.47 Suppose that a process is
‘BLOCKED’ state waiting for some
I/O service. When the service is
completed, it goes to the
a) RUNNING state
b) READY state
c) SUSPENDED state
d) TERMINATED state

Q.48 In a system that does not support
swapping

a) the compiler normally binds
symbolic address (variables) to
reloadable addresses.

b) the compiler normally binds symbolic
address to physical addresses.

c) the loader binds reloadable
addresses to physical addresses.

d) binding of symbolic addresses to
physical addresses normally takes
place during execution.

Q.49 To obtain better memory utilization,
dynamic loading is used. With
dynamic loading, a routine is not
loaded until it is called for. For
implementing dynamic loading,
a) special support from hardware

is essential.
b) special support from operating

system is essential.
c) Special support from both

hardware and operating system
are essential.

d) user programme can implement
dynamic loading without any
special support from the
operating system or the
hardware.

Q.50 Which of the following is true?
a) The linkage editor is used to edit

programs which have to be later
linked together

b) The linkage editor links object
modules during compilation or
assembling

c) The linkage editor links object
modules and resolves external
references between them before
loading.

d) The linkage editor resolved
external references between the
object modules during execution
time.

Q.51 Which of the following is true?
a) Overlays are used to increase the

size of physical memory.
b) Overlays are used to increase the

logical address space
c) When overlays are used, the size

of process is not limited to the
size of physical memory.

d) Overlays are used whenever the
physical address space is smaller
than the logical address space.

The next 5 questions are based on the
following information.
Consider a set of 5 processes whose arrival
time, CPU time needed and the priority are
given below:

Note: Smaller the number, higher the
priority.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.52 If the CPU scheduling policy is FCFS,
the average waiting time will be
a) 12.8 ms b) 8 ms
c) 16 ms d) None of the above

Q.53 If the CPU scheduling policy is SJF,
the average waiting time (without
pre-emption) will be
a) 12.8 ms b) 6.8 ms
c) 17 ms d) None of the above

Q.54 If the CPU scheduling policy is SJF
with pre-emption, the average
waiting time will be
a) 8 ms b) 14 ms
c) 5.6 ms d) none of the above

Q.55 If the CPU scheduling policy is
priority scheduling without pre-
emption, the average waiting time
will be
a) 12.8 ms b) 11.8 ms
c) 10.8 ms d) none of above

Q.56 If the CPU scheduling policy is
priority scheduling with pre-
emption, the average waiting time
will be
a) 19 ms b) 7.6 ms
c) 8 ms d) None of above

Q.57 In partitioned memory allocation
scheme, the
a) best fit algorithm is always

better than the first fit algorithm.
b) first fit algorithm is always better

than the best fit algorithm.
c) superiority of the first fit and

best-fit algorithms depends on
the sequence of the memory
request.

d) None of above

Q.58 Cascading termination refers to
termination of the all child
processes before the parents
terminates
a) Normally
b) abnormally
c) Normally or abnormally
d) None of the above

Q.59 For implementing of multi
programming operating system
a) Special support from processor

is essential
b) Special support from processor

is not essential
c) Cache memory must be available
d) More than one processor must

be available.

Q.60 Consider a system having ‘m’
resources of the same type. These
resources are shared by 3 processes
A, B, C, Which have peak time
demands of 3, 4, and 6 respectively.
The minimum value of ‘m’ that
ensures that deadlock will never
occur is
a) 11 b) 12
c) 13 d) 14

Q.61 A system has 3 processes sharing 4
resources. If each process needs a
maximum of 2 units, then deadlock
a) Can never occur
b) may occur
b) Has to occur
d) none of the above

Q.62 ‘m’ processes share ‘n’ resources of
the same type. The maximum needs
of each process don’t exceed ‘n’ and
the sum of all their maximum needs
is always less than m + n. In this set
up deadlock
a) can never occur
b) may occur
c) has to occur
d) None of the above

Q.63 A process refers to 5 pages, A, B, C, D
and E in the order – A; B; C; D; A; B;
E; A; B; C; D; E. If the page
replacement algorithm if FIFO, the
number of pages which transfer
with an empty internal store of 3
frame is
a) 8 b) 10
c) 9 d) 7

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.64 Distributed system should
a) Meet prescribed time constraints
b) Aim better resource sharing
c) Aim better system utilization
d) Aim low system overhead

Q.65 The main function of shared
memory is to
a) Use primary memory efficientl
b) Do intra process communication
c) Aim better system utilization
d) Aim low system overhead

Q.66 Which of the following is the most
suitable scheduling scheme in a
real–time operating system?
a) round-robin
b) first-come-first-served
c) Pre-emptive scheduling
d) random scheduling

Q.67 In Question number 63, if the
number of available page frames is
increased to 4 then the number of
page transfers
a) decreases
b) increases
c) remains the same
d) none of the above

Q.68 ‘Aging’ is
a) Keeping track of cache contents.
b) Keeping track of what pages are

currently residing in the
memory.

c) Keeping track of how many
times a given page is referenced.

d) Increasing the priority of jobs to
ensure termination in a finite
time.

Q.69 If there are 32 segments, each of
size 1 Kbytes, then the logical
address should have
a) 13 bits b) 14 bits
c) 15 bits d) 16 bits

Q.70 Disk requests come to a disk driver
for cylinders in the order 10, 22, 20,
2, 40, 6 and 38, at a time when the
disk drive is reading from cylinder

20. The seek time is 6 ms per
cylinder. The total seek time, if the
disk arm scheduling algorithm is
first-come-first-served is
a) 360 ms b) 850 ms
c) 900 ms d) None of the above

Q.71 In question 70, if the scheduling
algorithm is the closest cylinder
next, then the total seek time will b
a) 360 ms b) 876 ms
c) 850 ms d) 900 ms

Q.72 Certain moving arm disk storage
with one head has following
specification Number of tracks /
recording surface = 200 Disk
rotation speed = 2400 rpm Track
storage capacity = 62500 bits The
average latency time (assume that
the head can move from one track to
another only by traversing the
entire track) is
a) 2.5 s b) 2.9 s
c) 3.1 s d) 3.6 s

Q.73 Memory protection is normally done
by the
a) Processor and the associated

hardware
b) Operating system
c) Compiler
d) User program

Q.74 Which of the following scheduling
algorithms gives minimum average
waiting time?
a) FCFS b) SJF
c) Round-robin d) Priority

Q.75 In question number 72, the transfer
rate will be
a)2.5 Mbits/s b) 4.25 Mbits/s
c)1.5 Mbits/s d)3.75 Mbits/s

Q.76 In a paged segment scheme of
memory management, the segment
table itself must have a page table
because
a) the segment table is often too

large to fit in one page

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

b) each segment is spread over a
number of pages

c) segment table point to page
tables and not to the physical
location of the segment

d) the processor’s description base
register point to a page table

Q.77 Which of the following scheduling
policy is well suited for a time-
shared? Operating system?
a) FIFO
b) Pre-emptive scheduling
c) Round Robin
d) both FIFO and Pre-emptive

Q.78 Which of the following scheduling
policy is well suited for a time-
shared operating system?
a) Shortest job first
b) Round robin
c) First-come-first-serve
d) Elevator

Q.79 The address sequence generated by
tracing a particular executing in a
pure demand paging system with
100 records per page, with 1 free
main memory frame is recorded as
follows. What is the number of page
faults?
0100,0200,0430,0499,0510,0530,05
6, 0120,0220,0240,0260,0320,0370.
a) 13 b) 8
c) 7 d) 10

Q.80 A computer system has 4 k word
cache organized in a block-set-
associative manner, with 4 blocks
per set, 64 words per block. The
number of bits in the SET and
WORDS fields of the main memory
address format is

a) 15, 4 b) 6, 4
c) 7, 2 d) 4, 6

Q.81 A computer installation has 1000 k
of main memory. The jobs arrive
and finish in the following sequence.
Job 1 requiring 200 K arrives
Job 2 requiring 350 K arrives
Job 3 requiring 300 K arrives
Job 1 finishes
Job 4 requiring 120 K arrives
Job 5 requiring 150 K arrives
Job 6 requiring 80 K arrives
Among best fit and first fit, which
performs better for this sequence?
a) First fit
b) Best fit
c) Both perform the same
d) None of the above

Q.82 A memory page containing a heavily
used variable that was initialized
very early and is in constant use is
removed. When the page
replacement algorithm used is
a) LRU b) FIFO
c) LFU d) None of the above

Q.83 Consider the following heap. The
sequence of request for blocks of
sizes 300, 25, 125, 50 can be
satisfied if we use
a) Either first fit or best fit policy
b) first fit but not best fit
c) Best fit but not first fit
d) None of the above

Q.84 Consider the resources allocation
graph. This system is in a deadlock
state. This remark is
a) True
b) false
c) Impossible to determine
d) unpredictable

Q.85 Which of the following is a safe
sequence?
a) 0 1 2 3P ,P ,P ,P b) 1 0 3 2P ,P ,P ,P

c) 2 0 1 3P ,P ,P ,P d) None of the above

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.86 A demand paging system, with page
table had held in registers, takes 5
ms to service a page fault if an
empty page is available, or if the
page to be replaced in not dirty. It
takes 15 ms if the replace page is
dirty. Memory access time is 1μs.
Assume we want an effective access
time of 2μs. And that the page to be
replaced is dirty 60% of the time.
What is the approximate maximum
acceptable page fault rate to meet
this access time requirement?
a) 0.1 % b) 1.0 %
c) 2.5 % d) 0.01 %

Q.87 Consider a computer with 8 Mbytes
if main memory and a 128 k cache.
The cache block size is 4 K. It uses a
direct mapping scheme for cache
management. How many different
main memory can map onto a given
a given physical cache block?
a) 2048 b) 256
c) 64 d) None of the above

Q.88 Which of the following applications
are well suited for batch processing?
a) Process control
b) Video game control
c) Preparing pay bills of employees
d) Preparing mailing address

Q.89 Locality of reference implies that the
page reference being made by a
process
a) will always to be the page used

in the previous page reference.
b) is likely to be one of the pages

used in the last few page
reference.

c) will always be one of the pages
existing in memory

d) will always leads to page fault.

Q.90 The correct matching for the
following pairs
a) Disk scheduling 1)Round

robin
b) Batch processing 2) SCAN

c) Time sharing 3) LIFO
d) Interrupt processing 4) FIFO
Is:
a) A–3,B-4,C-2,D-1
b) A–4,B-3,C-2,D-1
c) A–2,B-4,C-1, D-3
d) A–2,B-1,C-4,D-3

Q.91 Thrashing
a) reduces page I/O
b) decreases the degree of

multiprogramming
c) implies excessive page I/O
d) improves the system performance

Q.92 Dirty bit for a page in a page table
a) helps avoid unnecessary writes

on a paging devise
b) helps maintain LRU information
c) allows only read on a page
d) None of the above

Q.93 Each process Pi, i = 1, 2, 3, 9 is
coded as follows
Repeat
P (mutex)
{ critical section }
V (mutex)
Forever
The code for P10 is identical except
that it uses V (mutex) instead of P
(mutex). What is the largest number
of processes that can be inside the
critical section at any of the
movement?
a) 1 b) 2
c) 3 d) none of the above

Q.94 When an interrupt occurs, an
operating system
a) ignores the interrupt
b) always change the state of the

interrupted process after
processing the interrupt

c) always resumes execution of the
interrupted process after
processing the interrupt

d) may change the state of the
interrupted process to “blocked”
and schedule another process.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.95 On a system with n CPUs, what is the
maximum number of processes that
can be in the ready, run and blocked
states ?

a)
n

2
b)

n

3

c) n d) None.

Q.96 Given system with n processes, how
many possible ways can those
processes be scheduled ?

a) n b) n

c)
n

2
d) None.

Q.97 On a system with 224 bytes of
memory and fixed partitions, all of
size 65,536 bytes, what is the
minimum number of bits needed in
an entry in the process table to
record the partition to which a
process has been allocated ?
a) 2 b) 4
c) 6 d) 8

Q.98 On a system with 224 bytes of
memory and fixed partitions, all of
size 65, 536 bytes, how many bits
must the limit register have
a) 4 b) 8
c) 12 d) 16.

Q.99 On a system using fixed partitions
with sizes 216, 224, and 232, how
many bits must the limit register
have?
a) 16 b) 24
c) 32 d) None.

Q.100 With a single resource, deadlock
occurs
a) if there are more than two

processes competing for that
resource

b) if there are only two process
competing for that resource

c) if there is a single process
competing for that resource

d) none of the above.

Q.101 Necessary conditions for deadlock
are
a) non-preemption and circular

wait
b) mutual exclusion and partial

allocation
c) both a) and b)
d) none of the above.

Q.102 In a time-sharing operating system,
when the time slot given to a
process is completed, the process
.goes from the RUNNING state to the
a) BLOCKED state
b) READY state
c) SUSPENDED state
d) TERMINATED state.

Q.103 A sequential access file has fixed-
size 15-byte records. Assuming the
first record is record 1, the first byte
of record 5 will be at what logical
location?
a) 41 b) 51
c) 61 d) None.

Q.104 A direct access file has fixed-size 15
byte records. Assuming the first
record is record 1, the first byte of
record 5 will be at what logical
location?
a) 41 b) 51
c) 61 d) none.

Q.105 A direct or sequential access file has
fixed-size S-byte records. The first
byte of record N will start at what
logical location ?
a)[(N+ 1)*S]+1 b)[(N-1)*S]-1
c) (N-1)* S+1] d) None.

Q.106 A program has just read the tenth
record in a sequential access file. It
next wants to read the sixth record.
How many records must the
program read to input the sixth ?
a) 4 b) 5
c) 6 d) None.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.107 On a system using a free hole array,
and that has K physical blocks, what
is the maximum length of a free hole
array? The minimum length?
a) 0 b) 1
c) 2 d) 3.

Q.108 At a particular time, the value of a
counting semaphore is 10. It will
become 7 after
a) 3 V operations
b) 3 P operations
c) 5V operations and 2P operations
d) 13P operations and 10V

operations.

Data of Q.109- Q.113 are given :
One a system using round-robin
scheduling, let s represent the time needed
to perform a process switch, q represent
the round-robin time quantum, and r
represent the average time a process runs
before blocking on I/0. CPU efficiency is
Q.109 q = ∞

a) r b)
1

r s

c)
r

r s
d) None

Q.110 q > r

a) r b)
1

r s

c)
r

r s
d) None.

Q.111 s < q < r

a) q b)
1

q s

c)
q

q s
d) None.

Q.112 s = q = r

a)
1

3
b)

1

2

c)
1

5
d) None

Q.113 q nearly 0
a) 0 b) 1
c) 1/2 d) None

Q.114 On a system using multilevel
feedback queues, a totally CPU-
bound process requires 40 seconds
to execute. If the first queue uses a
time quantum of 2 and at each level
the time quantum increases by 5
time-units, how many times will the
job be interrupted ?
a) 2 b) 3
c) 4 d) None

Q.115 On a system using non-preemptive
scheduling, processes with expected
run times of 5, 18, 9 and 12 are in
the ready queue. In what order
should they be run to minimize
wait time?
a) 5, 12, 9, 18 b) 5, 9, 12, 18
c) 12, 18, 9, 5 d) None.

Q.116 On a computer system with a single
32-bit 100 MHz bus (10ns cycle),
the disk controller uses DMA to
transfer data to/from memory at a
rate of 40Mb per second. Assume
the computer fetches and executes
one 32-bit instruction every cycle
when no cycles are stolen. By what
percentage will the disk controller
slow down instruction execution ?
a) 5% b) 10%
c) 15% d) 20%.

Q.117 A computer system that uses
memory-mapped I/O has a 16-bit
address space Addresses with ones
in the two most significant bits refer
to devices. What is the maximum
amount of memory that can be
referenced in such a system?
a) 27 b) 29

c)211 d) 214

Q.118 A disk file contains 32-byte fixed-
size records. Physical 1/0 is in
terms of 512 byte blocks that are
stored in an operating system
buffer. If a process sequentially
reads though a file's records, what

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

percentage of the read requests will
result in I/O operations?
a) 5.25% b) 6.25%
c) 7.25% d) None.

Data of Questions Q.119- Q.120 are
given:
On a system using a disk cache, the mean
access time is dependent on the mean
cache access time, the mean disk access
time, and the hit rate. For the following,
what is the mean access time?

Q.119 Cache:1ms; disk;100ms; hit rate:
25%
a) 50 b) 70
c) 75.25 d) None

Q.120 Cache:1ms;disk:100ms;
hit rate:50%
a) 30 b) 40
c) 50.50 d) None.

Q.121 On a simple paging system with 224
bytes of physical memory, 256
pages of logical address space, and a
page size of 210 bytes, No. of bits are
in a logical address ?
a) 10 b) 12
c) 16 d) 18.

Q.122 On a simple paging system with 224
bytes of physical memory, 256
pages of logical address space, and a
page size of 210 bytes, No. of bytes
are in a page frame?
a) 26 bytes b) 28 bytes
c) 210 bytes d) None.

Q.123 On a simple paging system with 2424

bytes of physical memory, 256
pages of logical address space, and a
page size of 210 bytes, No. of bits in
the physical address specify the
page frame.
a) 10 b) 12
c) 14 d) None.

Q.124 On a simple paging system with 224

bytes of physical memory, 256

pages of logical address space, and a
page size of 210 bytes, No. of entries
are in the page table (how long is
the page table)?
a) 156 entries b) 186 entries
c) 226 entries d) 256 entries.

Q.125 On a simple paging system with 224
bytes of physical memory, 256
pages of logical address space, and a
page size of 210 bytes, No. of bits are
needed to store an entry in the page
table (how wide is the page table)?
a) 4 b) 7
c) 9 d) 14.

Q.126 At a particular time of computation,
the value of a counting semaphore is
7. Then 20 P operations and 'x'. V
operations were completed on this
semaphore. If the final value of the
semaphore is 5, x will be
a) 15 b) 22
c) 18 d) 13.

Q.127 A computer system has 6 tape
drives, with 'n' processes competing
for them. Each process may need 3
tape drives. The maximum, value of
'n' for which the system is
guaranteed to be deadlock free is
a) 2 b) 3
c) 4 d) 1.

Q.128 In a paged memory, the page hit
ratio is 0,35. The time required to
access a page in secondary memory
is equal to 100 ns. The time required
to access a page in primary memory
is 10 ns. The average time required
to access a page is
a) 3.0 ns b) 68.0 ns
c) 68.5 ns d) 78.5 ns.

Q.129 In a multiuser operating system, 20
requests are made to use a
particular resource per hour, on an
average. The probability that no
requests are made in 45 minutes is

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 a) e-15 b) e-5
 c) 1-e-5 d) 1-e-10

Data of Questions Q.130-134 are given:
For the processes listed in Table, the
average turnaround time is
Process Scheduling Data

Process Arrival time Processing time
A
B
C
D

0.000
1.001
4.001
6.001

3
6
4
2

Q.130 In first-come first-served is
 a) 5.25 b) 6.25
 c) 7.25 d) None.

Q.131 In shortest job first is
 a) 5.25 b) 6.75
 c) 7.25 d) None.
Q.132 In shortest remaining time is
 a) 5.25 b) 6.25
 c) 6.75 d) None.

Q.133 In round robin (quantum=2) is
 a) 5.25 b) 6.25
 c) 7.25 d) 8.25.

Q.134 In round robin (quantum = 1) is
 a) 4.50 b) 5.50
 c) 6.50 d) 8.50.

Data of Questions Q.135- Q.139 are
given :
For the processes listed above, wait time
using:

Q.135 First-come first-served is
 a) 0, 2, 3, 7 b) 0, 2, 5, 7
 c) 0, 2, 5, 9 d) None.

Q.136 Shortest job first is
 a) 0, 2, 3,7 b) 0, 2, 7,3
 c) 0, 2, 3, 5 d) None.

Q.137 Shortest remaining time is
 a) 0, 8, 8, 0 b) 0, 8, 0, 2
 c) 0, 8, 3, 2 d) None.

Q.138 Round robin (quantum = 2) is

 a) 1, 6, 7, 3 b) 2, 6, 7, 3
 c) 2, 6, 3, 7 d) None.

Q.139 Round robin (quantum = 1) is
 a) 1, 8, 2, 4 b) 1, 8, 6, 4
 c) 2, 8, 3, 4 d) None.

Data of Questions Q.140- Q.142 are
given :
For the processes listed in Table, turn
around time is
Process Scheduling Data

Process Arrival time Processing time

A
B
C
D

0.000
2.001
3.001
3.001

4
7
2
2

Q.140 In first-come first-served
 a) 3, 4, 5, 7 b) 3, 5, 7, 9
 c) 4, 9, 10, 12 d) None.

Q.141 In shortest job first
 a) 2, 13, 3, 5 b) 4, 13, 3, 5
 c) 3, 13, 3, 15 d) None

Q.142 In shortest remaining time
 a) 3, 4, 3, 7 b) 4, 13, 3, 5
 c) 1, 3, 5, 7 d) None

Q.143 In round robin (quantum = 2)
 a) 3, 10, 5, 7 b) 3, 10, 7, 4
 c) 4, 13, 5, 7 d) None

Q.144 In round robin (quantum = 1)
 a) 3, 10, 17,3 b) 5, 13, 6, 7
 c) 5, 10, 3, 7 d) None

Data of Questions. Q.145-Q.150 are
given :
For the processes listed above, average
wait time is

Q.145 In first-come first-served
 a) 2 b) 3
 c) 4 d) 5.

Q.146 In shortest job first
 a) 1.5 b) 2
 c) 2.5 d) None.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.147 In shortest remaining time
a) 1.5 b) 2
c) 2.5 d) None.

Q.148 In round robin (quantum = 2)
a) 1.50 b) 2
c) 2.50 d) 3.50.

Q.149 In round robin (quantum = 1)
a) 2 b) 3
c) 4 d) 5.

Q.150 On a system using a disk cache, the
mean access time is 41.2 ms, the
mean cache access time is 2 ms, the
mean disk access time is 100 ms,
and the system has 8 Mb of cache
memory. For each doubling of the
amount of memory, the miss rate is
halved. How much memory must
be added to reduce the mean access
time to 20 ms?
a) 10.8 b) 11.8
c) 12.8 d) None.

Data of Questions. Q.151- Q.155 are
given :
On a disk with 1000 cylinders, numbers 0
to 999, compute the number of tracks the
disk arm must move to satisfy all the
requests in the disk queue. Assume the last
request serviced was at track 345 and the
head is moving toward track 0. The queue
in FIFO order contains requests for the
following tracks : 123, 874, 692, 475, 105,
376. Perform the computation for the
following scheduling algorithms :

Q.151 FIFO
a) 1013 b) 1713
c) 2013 d) None.

Q.152 SSTF
a) 1198 b) 1298
c) 1398 d) None.

Q.153 SCAN
a) 1019 b) 1119
c) 1219 d) None.

Q.154 LOOK
a) 809 b) 909
c) 1009 d) None.

Q.155 C-SCAN
a) 1267 b) 1567
c) 1967 d) None.

Q.156 C-LOOK
a) 1107 b) 1207
c) 1507 d) None.

Data of Questions. Q.157- Q.160 are
given :
A page size of 2000 bytes, and the following
page table in given

In/out Frame
in
out
in
in
out
out
in
in

20
22
200
150
30
50
120
101

Which of the following virtual addresses
generate a page fault ?

Q.157 10451
a) 5421 b) Fault
c) 3421 d) None.

Q.158 5421
a) 301, 321 b) 401, 421
c) 501, 521 d) None.

Q.159 14123
a) 202, 123 b) Fault
c) 102, 113 d) None.

Q.160 9156
a) 101, 104 c) 103, 105
b) Fault d) None.

Data of Questions. Q.161 Q.165 are given :

Consider a set of 5 processes whose arrival
time, CPU time needed and the priority are
given below :

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Process
priority

Arrival time
(in ms)

CPU time
needed(in ms)

Priority

P1 0 10 5

P2 0 5 2
P3 2 3 1
P4 5 20 4
P5 10 2 3

Answer the questions based on the above
information (smaller the number, higher
the priority) :

Q.161 If the CPU scheduling policy is FCFS,
 the average waiting time will be
 a) 12.8 ms

b) 8 ms
 c) 16 ms

d) None of the above.
Q.162 If the CPU scheduling policy is SJF,

the average waiting time (without
pre-emption) will be

 a) 12.8 ms
b) 6.8 ms

 c) 17 ms
d) None of the above.

Q.163 If the CPU scheduling policy is SW

with pre-emption, the average
waiting time will be

 a) 8 ms b) 14 ms
 c) 5.6 ms d) None of the above.

Q.164 If the CPU scheduling policy is

priority scheduling without pre-
emption, the average waiting time
will be

 a) 12.8 ms b) 11.8 ms
 c) 10.8 ms d) None of the above.

Q.165 If the CPU scheduling policy is

priority scheduling with pre-
emption, the average waiting time
will be

 a) 19 ms b) 7.6 ms
 c) 8 ms d) None of the above.

Q.166 Disks with geometries exceeding the
 following maximums could not be
 handled by early DOS systems :
 Cylinders 1024

Heads 16

Sectors per track 63
What is the maximum size disk
these systems could use?
a) 328 MB b) 428 B
c) 528 B d) None

Data of Questions. Q.167- Q.168 are
given :
 A disk has 8 sectors per track and spins at
600 rpm. It takes the controller 10 ms from
the end of one 1/0 operation before it can
issue a subsequent one. How long does it
take to read all 8 sectors using the
following interleaving systems ?

Q.167 No interleaving
 a) 400 ms b) 500 ms
 c) 600 ms d) 800 ms.

Q.168 Single interleaving
 a) 50 ms b) 100 ms
 c) 150 ms d) 200 ms.

Q.169 Double interleaving
 a) 75 ms b) 175 ms
 c) 275 ms d) None.

Q.170 A disk has 19456 cylinders, 16

heads and 63 sectors per track. The
disk spins at 5400 rpm. Seek time
between adjacent tracks is 2 ms.
Assuming the read/write head is
already positioned at track 0, how
long does it take to read the entire
disk?

 a) 28 min b) 38 min
 c) 48 min d) 58 min.

Q.171 If the average seek time for the disk

in the previous problem is 10 ms,
what is the average time to read a
sector?

 a) 12.73 ms b) 13.73 ms
 c) 14.73 ms d) 15.73 ms.

Q.172 On a simple paging system with a

page table containing 64 entries of
11 bits (including valid/invalid bit)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

each, and a page size of 512 bytes,
how many bits in the logical address
specify the page number?
a) 2 b) 4
c) 6 d) None.

Q.173 On a simple paging system with a
page table containing 64 entries of
11 bits (including valid/invalid bit)
each, and a page size of 512 bytes,
how many bits in the logical address
specify the offset within the page ?
a) 3 b) 5
c) 7 d) 9

Q.174 On a simple paging system with a
page table containing 64 entries of
11 bits (including valid/invalid bit)
each, and a page size of 512 bytes,
how many bits are in a logical
address?
a) 9 b) 11
c) 13 d) 15.

Q.175 On a simple paging system with a
page table containing 64 entries of
11 bits (including valid/invalid bit)
each, and a page size of 512 bytes,
what is the size of the logical
address space ?
a) 27 b) 29

c) 211 d) 215

Q.176 On a capability-based system, each
file is associated with a unique 16
bit number. For each file, each user
may have the read or write
capability. How many bytes are
needed to store each user's access
data?
a) 65536 b) 16384
c) 26384 d) None.

Q.177 On a system using fixed blocking
with 20-byte records and 50 byte
blocks, how much space will be
wasted in each block?
a) 5 bytes b) 10 bytes
c) 15 bytes d) None.

Q.178 Given a system using unspanned
blocking and 100 byte blocks. A file
contains records of 20, 50, 35, 70,
40, 20. What percentage of space
will be wasted in the blocks
allocated for the file?
a) 31.25% b) 41.25%
c) 51.25% d) None.

Q.179 Consider a system having 'm'
resources of the same type. These
resources are shared by 3 processes
A, B, C, which have peak time
demands of 3, 4, 6 respectively. The
minimum value of 'm' that ensures
that deadlock will never occur is
a) 11 b) 12
c) 13 d) 14.

Q.180 A system has 3 processes sharing 4
resources. If each process needs a
maximum of 2 units then
a) deadlock can never occur
b) deadlock may occur
c) deadlock has to occur
d) none of the above.

Q.181 'm' processes share 'n' resources of
the same type. The maximum need
of each process doesn't exceed 'n'
and the sum all their maximum
needs is always less than m + n. In
this set-up,
a) deadlock can never occur
b) deadlock may occur
c) deadlock has to occur
d) none of the above.

Q.182 A process refers to 5 pages, A, B, C, D
and E in the following order
A;B;C;D;A; B;E;A;B;C;D;E. If the page
replacement algorithm is FIFO, the
number of page transfer with an

empty internal store of 3 frames is
a) 8 b) 10
c) 9 d) 7

Q.183 Consider a system in which a
directory entry can store upto 16

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

disk block addresses. For files no
larger than blocks, the 16 addresses
serve as the file's index table. For
files larger than 16 blocks, the
addresses point to indirect blocks
which in turn point to 256 file
blocks each. A block is 1024 bytes.
How big can a file be?
a) 27 b) 2"
c) 222 d) None.

Data of Questions Q.184-Q.185 are given:
How many bits would be needed to store
the free list under the following conditions
if a bit map were used to implement the
free list ?

Q.184 For 16 bits per disk address ;
500,000 blocks total ; 200,000 free
blocks
a) 200,000 b) 300,000
c) 400,000 d) 500,000

Q.185 For 16 bits per disk address;
500,000 blocks total ; 0 free blocks
a) 200,000 b) 300,000
c) 500,000 d) None.

Q.186 On a system with D bits per disk
address, B blocks total, and F free
blocks, under what conditions will
the free list array use less space
than the bit map?
a)D×F=B b)D×F>B
c)D×F<B d) None.

Q.187 For D having the value of 32 bits,
what is the fraction of the disk
space that must be free?

a)
1

20

 b)
1

30



c)
1

40

 d) None.

Q.188 If the number of available page
frames is increased to 4 then
a) the number of page transfers

decreases
b) the number of page transfers

increases
c) the number of page transfers

remains the same
d) none of the above.

Q.189 If there are 32 segments, each of
size 1 k byte, then the logical
address should have
a) 13 bits b) 14 bits
c) 15 bits d) 16 bits.

Q.190 Disk requests come to a disk driver
for cylinders 10, 22, 20, 2, 40, 6 and
38, in that order at a time when the
disk drive is reading from
cylinder 20. The seek time is 6 ms
per cylinder. The total seek time,
I the disk arm scheduling algorithm
is first-come- first-served is
a) 360 ms b) 850 ms
c) 900 ms d) None of the above.

Q.191 A certain moving arm disk storage
with one head has following
specifications :
Number of tracks/recording surface
= 200
Disk rotation speed = 2400 rpm
Track storage capacity = 62500 bits

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(c) (c) (c) (c) (c) (c) (b) (a) (a) (d) (d) (b) (a) (b)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

(b) (b) (c) (d) (c) (b) (b) (c) (b) (b) (c) (a) (b) (c)

29 30 31 32 33 34 35 36 37 38 39 40 41 42

(d) (c) (b) (a) (c) (b) (c) (a) (a) (d) (c) (b) (c) (a)

43 44 45 46 47 48 49 50 51 52 53 54 55 56

(d) (d) (b) (d) (b) (a) (d) (c) (c) (a) (b) (c) (c) (b)

57 58 59 60 61 62 63 64 65 66 67 68 69 70

(c) (c) (b) (a) (a) (a) (c) (b) (c) (c) (b) (d) (c) (d)

71 72 73 74 75 76 77 78 79 80 81 82 83 84

(a) (a) (a) (b) (a) (b) (c) (b) (c) (d) (a) (b) (b) (b)

85 86 87 88 89 90 91 92 93 94 95 96 97 98

(c) (d) (c) (c) (b) (c) (c) (a) (c) (d) (c) (b) (d) (d)

99 100 101 102 103 104 105 106 107 108 109 110 111 112

(c) (d) (c) (b) (c) (c) (c) (c) (a) (b) (c) (c) (c) (b)

113 114 115 116 117 118 119 120 121 122 123 124 125 126

(a) (c) (b) (b) (d) (b) (c) (c) (d) (c) (c) (d) (d) (c)

127 128 129 130 131 132 133 134 135 136 137 138 139 140

(a) (c) (a) (c) (b) (b) (d) (d) (b) (b) (b) (b) (b) (c)

141 142 143 144 145 146 147 148 149 150 151 152 153 154

(b) (b) (c) (b) (d) (c) (c) (d) (c) (b) (c) (b) (c) (c)

155 156 157 158 159 160 161 162 163 164 165 166 167 168

(c) (c) (b) (b) (a) (b) (a) (b) (c) (c) (b) (c) (d) (d)

169 170 171 172 173 174 175 176 177 178 179 180 181 182

(c) (d) (d) (c) (d) (d) (d) (b) (b) (b) (a) (a) (a) (c)

183 184 185 186 187 188 189 190 191

(c) (d) (c) (c) (b) (b) (c) (d) (a)

ANSWER KEY:

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.15 (b)
Deadlock occurs when each other
of the 3 user processes hold one
resource and make simultaneous
demand for another. If there are 4
resources one of the 3 user
processes will get the fourth
instance of the resource and
relinquish one or both of the
resource(s) it is currently holding
after

Q.25 (c)
Each p operation will decrease
the Semaphore value by 1 and V
operations increase it by 1. If x is
18, then 7P operations will make
semaphore value 0. If this is
followed by 7V operations the
value comes back to 7. So after 18
P and 18 V operations, the value of
the semaphore will be 7. The
remaining 2P operations result in
the semaphore value 5.

Q.29 (d)
Even in a non-multiprogramming
system, memory protection may be
used, when for example, spooling
is being used.

Q.32 (a)
2 processes can never lead to
deadlock as the peak time demand
of (3+3) tape drives can be
satisfied. But 3 processes can lead
to deadlock if each holds 2 drives
and then demand one more.

Q.41 (c)
0.35×10+(1– 0.35)×100= 68.5 ns

Q.43 (d)

Size of Virtual Memory depends on
Size of Hard Disk. It doesn’t
depend on Address Bus, since we
have many addressing modes.

Q.44 (d)
The arrival pattern is a Poisson
distribution.

P (K requests)  
kμTe μT / k!

Here k = 0, μ= 20, T = 3/4.

Q.52 (a)
It is 0+10+(15–2)+(18–5)+(38–10)
divided by 5, i.e., 12.8 ms.

Q.53 (b)
It is 8+0+3+15+8 divided by 5, i.e.,
6.8 ms.

Q.54 (c)
It is 10+3+0+15+0 divided by 5, i.e.,
5.6 ms.

Q.55 (c)
It is 30 + 0 + 3 + 3 + 18 divided by
5, i.e., 10.8 ms.

Q.56 (b)
It is 30 + 3 + 0 + 5 + 0 divided by 5,
i.e., 7.6 ms.

Q.60 (a)
Having 11 resources ensure that at
least one process will have no
pending request. This process after
using will release the resources
and so Deadlock can never occur.

Q.61 (a)
At least one process will be holding
2 resources in case of a
Simultaneous demand from all the
processes. That process will
release the 2 resources, thereby
avoiding any possible deadlock.

EXPLANATIONS

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.62 (a)
Using Banker's algorithm, one can
show that one process has to
enquire all its needed resources.
This process after completing its
task, will release all its resource,
thereby avoiding any possible
deadlocks.

Q.63 (c)
The first 3 references A, B, C fills
the internal storage with A, B, C in
3 page transfer. Now the next
reference D results in a page fault.
So, page A is downloaded and D
takes its place after a page
transfer. So, the internal store has
D, B and C. The next reference is A-
results in a page fault. So, a page
transfer takes place and swaps B
and A. Continuing this way, we find
totally 9 page transfers are
necessary.

Q.67 (b)
Refer Qn 63, Applying the same
logic, we find the required number
of page transfer is 10. So,
increasing the number of pages
need not necessarily reduce the
number of page faults. It is the
actual sequence of references that
decides.

Q.69 (c)
To specify a particular segment, 5
bits are required (since 25=32).
Having selected page, to select a
particular byte one needs 10 bits
(since 210=1 K byte).So, totally 5 +
10 = 15 bits are needed.

Q.70 (d)
The disk drive has to traverse
totally 146 cylinders (verify). So,
Seek time is 6 × 146 = 876 ms

Q.72 (a)

To cover 2400×62500 bits, 60 s
are needed. Average latency time
is the needed to traverse 100
tracks i.e., 100 ×62500 bits, which
are 2.5 S.

Q.78 (b)
As this scheduling policy has a
better average response time for
the interactive users.

Q.79 (c)
When it tries to access 0100, it
results in a page fault as the
memory is empty tight now. So, it
loads the second page (which has
the address 100-199), Typing to
access 200 will result in a page
fault, as it not in memory right
now. So the third page with the
address from 200 to 299 will
replace the second page in
memory. Trying to access 430 will
result in another page fault.
Proceeding this way, we find trying
to access the address 0510, 0120,
0220 and 0320 will all result in
page faults. So, all together 7 page
faults.

Q.80 (d)
There are 64 words in a block. So
the 4K cache has (4×1024)/64= 64
blocks. Since 1 set has 4 blocks,
there are 16 sets. 16 sets need 4
bits for representation. In a set
there are 4 blocks, which needs 2
bits. Each block has 64 words. So,
the word field has 6 bits.

Q.81 (a)
The memory configuration after
the arrival of the jobs 1, 2, 3 and
the termination of job 1 can be
depicted as:

First fit algorithm will allocate the
FREE-200 slot for job 4.But best fit

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

algorithm will allocate the FREE-
150 slot for job 4. The memory
configuration for the first fit and
best fit will be

And

respectively. When job 5 arrives, it
will be allotted the FREE-150 slot
by the first fit algorithm and the
FREE-200 slot by the first fit
algorithm. The memory allocation
table for the first fit and best fit
will be

and

When Job 6 arrives, it will be
allotted the FREE-80 slot by the
first fit algorithm. The best fit
algorithm will find no room to
store Job 5 as the needed 80 K, is
not available contiguously. So, it
has to wait till a job terminates. So,
the first fit algorithm performs
better in the case.

Q.89 (b)
Locality of reference is based on
the fact that a page that is
referenced is likely to be referenced
again in the near future.

Q.93 (c)
Let the mutex be initialized to 1.
Any one of the 9 processes pi, i = 1,
2, 3 …, 9 can get into the critical
section after the execution P
(mutex) which decrements the
mutex value to 0. At this time P10
can enter into the critical section
as it uses V (mutex) instant of P
(mutex) to get into the critical
section. As a result of this, mutex
will be incremented by 1. Now any
one of the 9 processes Pi, i = 1, 2, 3,

…, 9 (expecting the one that is
already inside the critical section)
can get into the critical section
after decrementing the mutex to 0.
None of the remaining processes
can get into the critical section. If
the mutex is initialized to 0, only 2
processes can get into the critical
section. So the largest number of
processes is 3.

Q.95 (c)
There is no limit to the number or
processes that can be in the ready
and blocked states. At most, n
processes may be in the run state,
since a process in the run state
must be allocated to a CPU, and
there are only n CPUs.

Q.96 (b)
This is combinatories problem of
how many ways n objects can be
ordered. When selecting the first
object, one has n possible choices.
For the second object, n-1. Each
subsequent selection involves one
less choice. The total number of
possibilities 'is computed by
multiplying all the possibilities at
each point, making the answer n !

Q.97 (d)
65,536 is 216. Dividing the number
of bytes of total memory by the
size of each partition yield the
number of partitions, 224/216 = 28.
Eight bits are needed to store one
of 28 partition numbers.

Q.98 (d)
The total amount of memory on,
the system is irrelevant. Since
65,536 is 216, the largest valid
address is 216-1. In binary, 216-1 is
16 ones. The limit register must
have 16 bits.

Q.99 (c)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Since the system has only one limit
register, it must be large enough to
accommodate addresses in any
partition. The largest possible
partition is 232 Therefore. The limit
register must have 32 bits.

Q.103 (c)
Record 5 is preceded by 4 records,
each of 15 bytes. The fifth record
will start at byte (4*15)+1=61.

Q.104 (c)
The logical layout of the records is
the same for both access methods.

Q.105 (c)
Record N will start at byte
((N-1)*S)+1.

Q.106 (c)
Six. Sequential access typically is
one way, from start to finish. To go
back to the sixth record, the input
would have to start over from
record one. Typically, the input
stream would have to be reopened
or rewound to accomplish this.

Q.107 (a)
The maximum number of holes is
created by having alternating free
and used blocks. Thus, the
maximum number of holes is
(K+1)/2 (where 'I' represents
integer division). The minimum
number of holes is zero, which
occurs when all of memory is in
use.

Q.109 (c)
Processes will run until they block.
For each cycle, s units of overhead
will be needed to accomplish r
units of useful work. CPU

efficiency is
 

r

r s

Q.110 (c)

Since processes will still run until
they block, the answer is the same
as for part (a).

Q.111 (c)
The number of switches required
will be r/q, making the time
wasted on switches sr/q. CPU

efficiency is
   

r r
=

r sr / q q s 

Q.112 (b)
Same answer as above except with

q=s, the equation evaluates to
1

2
.

Q.113 (a)
Using the equation in part (c), as q
goes to 0. CPU efficiency goes to 0.

Q.114 (c)
The process will be interrupted at
time 2 in the first queue, time 2+7
in the second queue, time 9+12 the
third queue, time 21+17 the
fourth queue, and will be running
in the fifth queue when it
terminates. There were four
interrupts.

Q.115 (b)

Q.116 (b)
Given the bus is 32 bits wide, the
controller can transfer 4 byte
10,000,000 times per second or 4
bytes every 100 ns. The controller
will steal a cycle once every 10
instruction fetches for a slowdown
of 10%.

Q.117 (d)
At most 214 memory locations can
be accessed. All addresses 214 and
higher refer to I/O devices.

Q.119 (c)
100×0.75 + 1×0.25 = 75.25.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.120 (c)
100×0.50 + 1×0.50 = 50.50.

Q.121 (d)
The logical address space contains
256= 28 pages of 210 bytes, making
the total logical address space
210×218=218 bytes. An 18 bit
address is required to cover a 218
byte address space.

Q.122 (c)
The page frame size is the same as
the page size. Therefore, the page
frame size is 210 bytes.

Q.123 (c)
A 24 bit address is required to
cover the 224 byte physical
address space. Since pages, and
therefore page frames, are 210
bytes, the last 10 bits in the
physical address specify the page
offset. The remaining 14 bits
specify the page frame number.

Q.124 (d)
The page table must contain an
entry for each page. Since there
are 256 pages in the logical
address space, the page table must
be 256 entries long.

Q.125 (d)
Each entry contains 1 bit to
indicate if the page is valid and 14
bits to specify the page frame
number.

Q.126 (c)
Each P operation will decrease the
semaphore value by 1 and V
operation increase by 1. If x is 18,
then 7P operations will make the
semaphore value 0. If this is
followed by 7V operations the
value comes back to 7. So, after
10P and 18V operations, the value
of the semaphore will be 7. The

remaining 2 P operations result
in the semaphore value 5.

Q.127 (a)
2 process can never lead to
deadlock as the peak time demand
of 6(3+3) tape drives can be
satisfied. But 3 processes can lead
to a deadlock if each hold 2 drives
and then demand one more.

Q.128 (c)
0.35×10+(1-0.35) ×100=68.5ns.

Q.129 (a)
The arrival pattern is a Poisson
distribution.
P (k requests)= e-μT(μT)k/k
Here k= 0, μ= 20, T = 3/4.
So required probability is e-15.

Q.130 (c)
Turnaround time is computed by
subtracting the time the process
entered the system from the time
it terminated.
        3 0 9 1 13 4 15 6

= 7.25
4

      

Q.131 (b)
        3 0 9 1 15 4 11 6

=6.75
4

      

Q.132 (b)
        3 0 15 1 8 4 10 6

= 6.25
4

      

Q.133 (d)
        5 0 13 1 15 4 11 6

= 8.25
4

      

Q.134 (d)
        4 0 15 1 14 4 12 6

= 8.50
4

      

Q.135 (b)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Wait time can be computed by
subtracting a process's execution
time from its turn round time.
A:(3-3)=0, B:(8-6)=2,
C:(9-4)=5, D:(9-2)=7.

Q.136 (b)
A:(3-3)= 0, B:(8-6)=2,
C:(11-4)=7, D:(5-2)=3

Q.137 (b)
A :(3-3)= 0, B:(14-6)= 8,
C:(4 -4)= 0, D:(4-2)=2.

Q.138 (b)
A:(5-3)=2, B:(12-6)=6,
C:(11-4)= 7, D:(5-2)=3.

Q.139 (b)
A:(4-3)= 1, B:(14-6)=8,
C:(10-4)= 6, D:(6-2)=4.

Q.140 (c)
A : 4, B : 9, C : 10, D : 12

Q.141 (b)
A : 4, B:13, C : 3, D:5

Q.142 (b)
A : 4, B : 13, C : 3, D : 5

Q.143 (c)
A : 4, B:13, C:5, D:7

Q.144 (b)
A:5, B:13, C:6, D:7

Q.145 (d)
5.00

Q.146 (c)
2.50

Q.147 (c)
2.50

Q.148 (d)
3.50

Q.149 (c)
4.00

Q.150 (b)
The hit ratio can be computed
from the equation,
2×(1-m)+ 100 m=41.2
2-2 m+ 100 m=41.2
39.2 = 98 m 0.40 = m
Doubling memory to 16 Mb would
lower the miss rate to 0.20.
2×0.80+100×0.20=21.6
An additional doubling to 32 Mb
would be needed to lower the
mean access time below 20 ms.
2×0.90+100×0.10= 11.8.

Q.151 (c)
The tracks travelled to will be 345,
123, 874, 692, 475, 105 and 376,
making the total distance 222+ 751
+182 +217 +370 +271 =2013

Q.152 (b)
The tracks travelled to will be 345,
376, 475, 692, 874, 123and 105,
making the total distance 529+769
= 1298.

Q.153 (c)
The tracks travelled to will be 345,
123, 105, 0, 376, 475, 692 & 874,
making the total distance 345+874
= 1219.

Q.154 (c)
The tracks travelled to will be
345,123, 105, 376, 475, 692 and
874, making the total distance 240
+ 769 = 1009.

Q.155 (c)
The tracks travelled to will be 345,
123, 105, 0, 999, 874, 692, 475 &
376, making the total distance
345+999+623=1967

Q.156 (c)

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

The tracks travelled to will be 345,
123, 105, 874, 692, 475 & 376,
making the total distance 240+
769+ 498 = 1507.

Q.157 (b)
Virtual address 10451 is offset 451
in page 5. Page 5 is "out" resulting
in a fault.

Q.158 (b)
Virtual address 5421 is offset 1421
in page 2. Page 2 is "in" at frame
200 which is address 400,000.
Adding the offset to the frame's
starting address yields physical
address 401, 421.

Q.159 (a)
Virtual address 14123 is offset 123
in page 7. Page 7 is "in" at frame
101 which is address 202,000.
Adding the offset to the frame's
starting address yields physical
address 202, 123.

Q.160 (b)
Virtual address 9156 is offset 1156
in page 4. Page 4 is "out" resulting
in a fault.

Q.161 (a)
It is 0+10+(15-2)+(18-5)+(38-10)
divided by 5, i.e., 12.8 ms.

Q.162 (b)
It is 8+0+3+15+8 divided by 5, i.e.
6.8 ms.

Q.163 (c)
It is 10 + 3 + 0 + 15 + 0 divided by
5, i.e., 5.6 ms.

Q.164 (c)
It is 30 + 0 + 3 + 3 + 18 divided by
5, i.e., 10.8 ms.

Q.165 (b)

It is 30 + 3 + 0 + 5 + 0 divided by 5,
i.e., 7.6 ms.

Q.166 (c)
1024 x 16 x 63 x 512 =
528,482,304 = 528 Mb.

Q.167 (d)
The disk makes 10 revolutions per
second or one revolution in 100
ms. In 10 ms, less than one sector
will have passed under the
read/write head. The next sector
cannot be read until the disk makes
almost a complete revolution. It will
require 8 revolutions to read all 8
sectors. At 100 ms per revolution,
it will take 800 ms.

Q.168 (d)
The next sector will spin under the
read/write head almost as soon as
the next I/O operation is issued.
Two revolutions will be needed
to read all 8 sectors, making the
total read time 200 ms.

Q.169 (c)
A total of 2.75 revolutions will be
needed to read all 8 sectors, for a
total time of 275 ms.

Q.170 (d)
Each track can be read in one
revolution, or 11.11ms. To read all
19456×16 tracks requires
approximately 3459 seconds. Seek
time is (19456-1)×2=39s. Total
time is 3498s= 58 min.

Q.171 (d)
Seek time will be 10 ms. Latency
time will be 5.55 ms. Transfer time
will be 0.18 ms. Total time is 15.73
ms.

Q.172 (c)
Since there are 64= 26 pages, 6 bits
of the logical address are required
to specify the page number.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

Q.173 (d)
Since a page is 512 = e bytes long,
9 bits are required to specify the
offset within the page. -

Q.174 (d)
The 6 most significant bits of the
logical address would specify the
page number, the 9 least
significant bits would specify
the page offset, making the total
number of bits 15.

Q.175 (d)
In the previous problem, the
logical address was determined to
have 15 bits. A 15 bit address
creates an address space of 32,768
=215.

Q.176 (b)
Two bits are needed for each of
65,536 (216) files. Thus, 131,072
bits or 16,384 bytes would be
needed.

Q.178 (b)
The first block can contain the first
two records, leaving 30 bytes
wasted. The second block can only
contain the third record, wasting
65 bytes. The third block can only
contain the fourth record, wasting
30 bytes. The last two records will
be allocated to the fourth block,
which will contain 40 wasted
bytes. Thus, of the 400 bytes in the
four blocks, 30+ 65 + 30 + 40 = 165
bytes, or 41.25% is

Q.179 (a)
Having 11 resources ensures that
at least 1 process will have no
pending request. This process after
using will release the resources
and so deadlock can never occur.

Q.180 (a)
At least one process will be holding
2 resources in case of a
simultaneous demand from all the
processes. That process will
release the 2 resources, thereby
avoiding any possible deadlock.

Q.181 (a)
Using Banker's algorithm, one can
show that one process has to
acquire all its needed resources.
This process, after completing its
task, will release all its resources,
thereby avoiding any possible
deadlock.

Q.182 (c)
The first 3 references A, B, C fills
the internal storage with A, B, C in
3 page transfers. Now the next
reference D results in a page fault.
So, page A is downloaded and D
takes its place, after a page
transfer. So, the internal store has
D, B and C. The next reference is A
results in a page fault. So, a page
transfer takes place and swaps B
and A. Continuing this way, we find
totally 9 page transfers are
necessary.

Q.183 (c)
The largest possible file will have
16=24 indirect blocks. Since each
indirect block can point to 256=28
blocks, the largest file has 256=28+4

blocks. Given a block size of 1024=
210, the maximum file size is
24+8+10= 222

Q.184 (d)
In either case, the number of bits
per address and the number of free
blocks are irrelevant. The status of
each of the 500,000 blocks is
stored in a bit. 500,000 bits are
needed.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

 Q.186 (c)
D × F < B.

Q.187 (b)
32×F < B

F<
B

32

Less than one thirty-second of the
blocks can be free.

Q.188 (b)
Applying the same logic, we find
the required number of page
transfer is 10. So, increasing the
number of pages need not
necessarily reduce the number of
page faults. It is the actual
sequences of references that
decides.

Q.189 (c)
To specify a particular segment, 5
bits are required (since25=32).
Having selected a page, to select a
particular byte one needs 10 bits
(since 210= 1 k byte). So totally
5+10=15bits are needed.

Q.191 (a)
To cover 2400×62500 bits, 60 s
are needed. Average latency time
is the time needed to traverse 100
tracks i.e., 100×62500 bits, which
is 2.5 s.

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission

	Main Page
	Syllabus
	THEORY
	CHAPTER 1.....
	CHAPTER 1-Process Management
	1. Process and DeadLock - Que
	1. Process and DeadLock - Sol

	CHAPTER 2......
	CHAPTER 2 Memory Management
	2. Memory Management - Que
	2. Memory Management - Sol

	CHAPTER 3.....
	CHAPTER 3- INTERRUPTS
	3. interrupts - Que
	3. interrupts - Sol

	CHAPTER 4......
	CHAPTER 4- FILE MANAGEMENT
	4. File system - Que
	4. File system - Sol

	assignment
	ASSIGNMENT QUESTION
	ASSIGNMENT ANSWER KEY
	ASSIGNMENT SOLUTION

